December 2015

日本海溝に発生する地震による確率論的 津波ハザード評価の手法の検討

An Approach to Tsunami Hazard Assessment along the Northeastern Coastal Area in Japan

-Method and Preliminary Results-

防災科学技術研究所研究資料 第四〇〇号 日 本海溝に発生する地震による確率論的津波 ハ ザ ド 評価の手法の検討

防災科学技術研究所

National Research Institute for Earth Science and Disaster Prevention Tennodai 3-1, Tsukuba, Ibaraki, 305-0006 Japan 第400号

防災科学技術研究所研究資料

Technical Note of the National Research Institute for Earth Science and Disaster Prevention: No.400

国立研究開発法人 防災科学技術研究所

National Research Institute for Earth Science and Disaster Prevention, Japan

防災科学技術研究所研究資料

第 331 号	E-Defense を用いた実大 RC 橋脚 (C1-1 橋脚) 震動破壊実験研究報告書 -1970 年代に建設された基部曲げ破壊タイ
	プの RC 橋脚震動台実験 -(付録 DVD) 107pp. 2009 年 1 月発行
第 332 号	強震ネットワーク 強震データ Vol. 25(平成 20 年 No. 1) (CD-ROM 版). 2009 年 3 月発行
第 333 号	強震ネットワーク 強震データ Vol. 26(平成 20 年 No. 2) (CD-ROM 版). 2009 年 3 月発行
第 334 号	平成 17 年度大都市大震災軽減化特別プロジェクトⅡ 地盤基礎実験 - 震動台活用による構造物の耐震性向上研究 -
	(付録 CD-ROM) 62pp. 2009 年 10 月発行
第 335 号	地すべり地形分布図 第 43 集「函館」14 葉 (5 万分の 1).2009 年 12 月発行
第 336 号	全国地震動予測地図作成手法の検討(7 分冊 + CD-ROM 版). 2009 年 11 月発行
第 337 号	強震動評価のための全国深部地盤構造モデル作成手法の検討(付録 DVD). 2009 年 12 月発行
第 338 号	地すべり地形分布図 第 44 集「室蘭・久遠」21 葉(5 万分の 1).2010 年 3 月発行
第 339 号	地すべり地形分布図 第 45 集 「岩内」14 葉 (5 万分の 1).2010 年 3 月発行
第 340 号	新庄における気象と降積雪の観測(2008/09 年冬期) 33pp. 2010 年 3 月発行
第 341 号	強震ネットワーク 強震データ Vol. 27(平成 21 年 No. 1) (CD-ROM 版). 2010 年 3 月発行
第 342 号	強震ネットワーク 強震データ Vol. 28(平成 21 年 No. 2) (CD-ROM 版). 2010 年 3 月発行
第 343 号	阿寺断層系における深層ボーリング調査の概要と岩石物性試験結果(付録 CD-ROM) 15pp. 2010 年 3 月発行
第 344 号	地すべり地形分布図 第 46 集 「札幌・苫小牧」19 葉 (5 万分の 1). 2010 年 7 月発行
第 345 号	地すべり地形分布図 第 47 集「夕張岳」16 葉(5 万分の 1).2010 年 8 月発行
第 346 号	長岡における積雪観測資料(31)(2006/07,2007/08,2008/09 冬期)47pp. 2010 年 9 月発行
第 347 号	地すべり地形分布図 第 48 集「羽幌・留萌」 17 葉 (5 万分の 1).2010 年 11 月発行
第 348 号	平成 18 年度 大都市大震災軽減化特別プロジェクト実大 3 層 RC 建物実験報告書 (付録 DVD) 68pp. 2010 年 8 月発行
第 349 号	防災科学技術研究所による深層掘削調査の概要と岩石物性試験結果(足尾・新宮・牛伏寺)(付録 CD-ROM)12pp.
	2010 年 8 月発行
第 350 号	アジア防災科学技術情報基盤(DRH-Asia) コンテンツ集 266pp.2010 年 12 月発行
第 351 号	新庄における気象と降積雪の観測(2009/10 年冬期) 31pp. 2010 年 12 月発行
第 352 号	平成 18 年度 大都市大震災軽減化特別プロジェクトⅡ 木造建物実験 - 震動台活用による構造物の耐震性向上研究 -
	(付録 CD-ROM)120pp. 2011 年 1 月発行
第 353 号	地形・地盤分類および常時微動の H/V スペクトル比を用いた地震動のスペクトル増幅率の推定 242pp.
	2011年1月発行
第 354 号	地震動予測地図作成ツールの開発(付録 DVD) 155pp. 2011 年 5 月発行
第 355 号	ARTS により計測した浅間山の火口内温度分布(2007 年 4 月から 2010 年 3 月) 28pp. 2011 年 1 月発行
第 356 号	長岡における積雪観測資料(32)(2009/10 冬期) 29pp. 2011 年 2 月発行
第 357 号	浅間山鬼押出火山観測井コア試料の岩相と層序(付録 DVD) 32pp. 2011 年 2 月発行
第 358 号	強震ネットワーク 強震データ Vol. 29(平成 22 年 No. 1) (CD-ROM 版). 2011 年 2 月発行
第 359 号	強震ネットワーク 強震データ Vol. 30(平成 22 年 No. 2) (CD-ROM 版). 2011 年 2 月発行
第 360 号	K-NET・KiK-net 強震データ(1996 - 2010) (DVD 版 6 枚組). 2011 年 3 月発行
第 361 号	統合化地下構造データベースの構築 <地下構造データベース構築ワーキンググループ報告書> 平成 23 年 3 月
	238pp. 2011 年 3 月発行
第 362 号	地すべり地形分布図 第 49 集「旭川」 16 葉 (5 万分の 1).2011 年 11 月発行
第 363 号	長岡における積雪観測資料(33)(2010/11 冬期) 29pp. 2012 年 2 月発行
第 364 号	新庄における気象と降積雪の観測(2010/11 年冬期) 45pp. 2012 年 2 月発行
第 365 号	地すべり地形分布図 第 50 集「名寄」 16 葉(5 万分の 1).2012 年 3 月発行
第 366 号	浅間山高峰火山観測井コア試料の岩相と層序(付録 CD-ROM) 30pp. 2012 年 2 月発行
第 367 号	防災科学技術研究所による関東・東海地域における水圧破砕井の孔井検層データ 29pp. 2012 年 3 月発行
第 368 号	台風災害被害データの比較について(1951 年~ 2008 年,都道府県別資料)(付録 CD-ROM)19pp. 2012 年 5 月発行
第 369 号	E-Defense を用いた実大 RC 橋脚(C1-5 橋脚)震動破壊実験研究報告書 - 実在の技術基準で設計した RC 橋脚の耐
	震性に関する震動台実験及びその解析 - (付録 DVD) 64pp. 2012 年 10 月発行
第 370 号	強震動評価のための千葉県・茨城県における浅部・深部地盤統合モデルの検討(付録 CD-ROM) 410pp. 2013 年
	3月発行
第 371 号	野島断層における深層掘削調査の概要と岩石物性試験結果(平林・岩屋・甲山)(付録 CD-ROM) 27pp. 2012 年
	12 月発行

[■] 表紙図 ・・・・・日本海溝沿いの海溝型地震による津波ハザード評価の例(地震発生確率モデルを BPT モデルと想定した場合の 30 年 超過確率が約3%となる沿岸の津波高さの分布)

防災科学技術研究所研究資料

第 372 号	長岡における積雪観測資料 (34) (2011/12 冬期) 31pp. 2012 年 11 月発行
第 373 号	阿蘇山一の宮および白水火山観測井コア試料の岩相記載(付録 CD-ROM)
第 374 号	霧島山万膳および夷守台火山観測井コア試料の岩相記載(付録 CD-ROM)
第 375 号	新庄における気象と降積雪の観測(2011/12 年冬期) 49pp. 2013 年 2 月発
第 376 号	地すべり地形分布図 第51 集「天塩・枝幸・稚内」 20 葉(5 万分の1). 2013
第 377 号	地すべり地形分布図 第 52 集「北見・紋別」 25 葉(5 万分の 1). 2013 年 3 月
第 378 号	地すべり地形分布図 第 53 集「帯広」 16 葉 (5 万分の 1). 2013 年 3 月発行
第 379 号	東日本大震災を踏まえた地震ハザード評価の改良に向けた検討 349pp. 24
第 380 号	日本の火山ハザードマップ集 第2版(付録 DVD) 186pp. 2013年7月発
第 381 号	長岡における積雪観測資料 (35) (2012/13 冬期) 30pp. 2013 年 11 月発行
第 382 号	地すべり地形分布図 第54 集「浦河・広尾」18 葉(5 万分の1). 2014 年2月
第 383 号	地すべり地形分布図 第55 集「斜里・知床岬」23 葉(5 万分の1).2014 年2
第 384 号	地すべり地形分布図 第56 集「釧路・根室」16 葉(5 万分の1). 2014 年2月
第 385 号	東京都市圏における水害統計データの整備(付録 DVD) 6pp. 2014 年 2 月
第 386 号	The AITCC User Guide -An Automatic Algorithm for the Identification and
	2014 年 3 月発行
第 387 号	新庄における気象と降積雪の観測(2012/13 年冬期) 47pp. 2014 年 2 月発
第 388 号	地すべり地形分布図 第 57 集「沖縄県域諸島」 25 葉 (5 万分の 1). 2014 年 3
第 389 号	長岡における積雪観測資料 (36) (2013/14 冬期) 22pp. 2014 年 12 月発行
第 390 号	新庄における気象と降積雪の観測(2013/14 年冬期) 47pp. 2015 年 2 月発
第 391 号	大規模空間吊り天井の脱落被害メカニズム解明のためのE-ディフェンス
	井の脱落被害再現実験および耐震吊り天井の耐震余裕度検証実験- 193pp
第 392 号	地すべり地形分布図 第58 集 「鹿児島県域諸島」27 葉(5 万分の1).2015 年
第 393 号	地すべり地形分布図 第59集「伊豆諸島および小笠原諸島」10葉(5万分の1
第 394 号	地すべり地形分布図 第60集「関東中央部」15葉(5万分の1). 2015年3月
第 395 号	水害統計全国版データベースの整備. 2015 年発行予定
第 396 号	2015年4月ネパール地震(Gorkha地震)における災害情報の利活用に関すると
第 397 号	2015年4月ネパール地震(Gorkha地震)における建物被害に関する情報収
第 398 号	長岡における積雪観測資料 (37) (2014/15 冬期) 29pp. 2015 年 11 月発行

- 編集委員	년숲 -	防災
(委員長)	下川 信也	
(委 員) 森川 信之 平島 寛行 三好 康夫	木村 尚紀 佐々木智大	編発
(事務局) 臼田裕一郎 (編集・校正)	横山 敏秋 樋山 信子	印

© National Research Institute for Earth Science and Disaster Prevention 2015

※防災科学技術研究所の刊行物については、ホームページ(http://dil-opac.bosai.go.jp/publication/)をご覧下さい.

目記載(付録 CD-ROM) 48pp. 2013 年 2 月発行 目記載(付録 CD-ROM) 50pp. 2013 年 3 月発行 49pp. 2013 年 2 月発行 葉(5万分の1). 2013年3月発行 万分の1).2013年3月発行 1). 2013年3月発行 こ向けた検討 349pp. 2012 年 12 月発行 186pp. 2013 年 7 月発行 0pp. 2013 年 11 月発行 万分の1). 2014年2月発行 (5万分の1). 2014年2月発行 万分の1). 2014年2月発行 VD) 6pp. 2014 年 2 月発行 or the Identification and Tracking of Convective Cells- 33pp. 47pp. 2014 年 2 月発行 (5万分の1). 2014年3月発行 2pp. 2014 年 12 月発行 47pp. 2015 年 2 月発行 こめのE – ディフェンス加振実験 報告書 – 大規模空間吊り天 ☆裕度検証実験− 193pp. 2015 年 2 月発行 葉(5万分の1). 2015年3月発行 原諸島」10葉(5万分の1).2015年3月発行 万分の1).2015年3月発行 予定 序情報の利活用に関するヒアリング調査 58pp. 2015 年7月発行 建物被害に関する情報収集調査速報 16pp. 2015 年 9 月発行 9pp. 2015 年 11 月発行 第 399 号 東日本大震災を踏まえた地震動ハザード評価の改良(付録 DVD) 253pp. 2015 年 12 月発行

災科学技術研究所研究資料 第400号

平成 27 年 12 月 24 日 発行

扁集兼 国立研究開発法人 〒 305-0006 茨城県つくば市天王台3-1 電話 (029)863-7635 http://www.bosai.go.jp/

印刷所松枝印刷株式会社 茨城県常総市水海道天満町2438

日本海溝に発生する地震による確率論的津波ハザード評価の手法の検討

藤原広行^{*1}・平田賢治^{*1}・中村洋光^{*1}・長田正樹^{*1}・森川信之^{*1}・河合伸一^{*1}・大角恒雄^{*1}・ 青井 真^{*1}・松山尚典^{*2}・遠山信彦^{*2}・鬼頭 直^{*2}・村嶋陽一^{*3}・村田泰洋^{*3}・井上拓也^{*3}・ 斎藤 龍^{*3}・秋山伸一^{*4}・是永眞理子^{*4}・阿部雄太^{*4}・橋本紀彦^{*4}

An Approach to Tsunami Hazard Assessment along the Northeastern Coastal Area in Japan -Method and Preliminary Results-

Hiroyuki FUJIWARA^{*1}, Kenji HIRATA^{*1}, Hiromitsu NAKAMURA^{*1}, Masaki OSADA^{*1}, Nobuyuki MORIKAWA^{*1}, Shinichi KAWAI^{*1}, Tsuneo OHSUMI^{*1}, Shin AOI^{*1}, Hisanori MATSUYAMA^{*2}, Nobuhiko TOYAMA^{*2}, Tadashi KITOU^{*2}, Yoichi MURASHIMA^{*3}, Yasuhiro MURATA^{*3}, Takuya INOUE^{*3}, Ryu SAITO^{*3}, Shinichi AKIYAMA^{*4}, Mariko KORENAGA^{*4}, Yuta ABE^{*4}, and Norihiko HASHIMOTO^{*4}

*1 National Research Institute for Earth Science and Disaster Prevention
 *2 OYO corporation
 *3 Kokusai Kogyo Co., LTD.
 *4 Itochu Techno-Solutions Corporation

^{*1}国立研究開発法人 防災科学技術研究所

^{*2} 応用地質株式会社

^{*3} 国際航業株式会社

^{*4} 伊藤忠テクノソリューションズ株式会社

1.	13	はじめに	1
	1.1	経緯	1
	1.2	全国を概観した確率論的津波ハザード評価の概要	1
	1.3	地域を限定した確率論的津波浸水ハザード評価手法の検討の概要	3
2.	碷	産率論的津波ハザード評価の方法に関する既往技術の概観	4
	2.1	確率論的津波ハザード評価の手法に関する既往研究	4
		2.1.1 地震・津波のハザード評価の手法	4
		2.1.1.1 確率論的地震ハザード評価の手法	4
		2.1.1.2 確率論的津波ハザード評価の手法	5
		2.1.1.3 発生確率の評価方法	7
		2.1.1.4 津波ハザード評価における不確実性の扱い	7
		2.1.2 海外での研究事例	. 10
	2.2	津波発生源および日本周辺での地震活動にともなう津波	. 12
		2.2.1 津波発生源	. 12
		2.2.2 日本周辺での地震活動に伴う津波	. 13
		2.2.3 津波痕跡に関する資料	. 14
	2.3	津波の発生および伝播に関する計算手法	. 20
		2.3.1 地形モデルの作成方法,使用されているデータ,データの精度について	. 20
		2.3.2 シミュレーション手法	. 34
3.	E	日本海溝沿いに発生する地震による確率論的津波ハザード評価の手法に関する検討	. 39
	3.1	確率論的津波ハザード評価の基本的な考え方	. 39
	3.2	地震の発生可能性のモデル	. 41
	3.3	特性化波源断層モデルの設定の方法	. 47
		3.3.1 特性化波源断層モデルによる津波波源設定の基本的な方針	. 47
		3.3.2 津波を発生する地震のスケーリング則(地震モーメント Mo と断層面積 S の経験的な関係)	49
		3.3.3 波源域の剛性率 µ について	. 52
		3.3.4 すべり不均質の設定	. 53
		3.3.5 津波地震の Mt の設定	. 68
		3.3.6 要素断層の設定と断層パラメータ	. 70
	3.4	·特性化断層モデル群	. 73
	3.5	地形モデルの作成	. 81
		3.5.1 地形モデルの作成	. 81
		3.5.2 日本海溝周辺を対象とした概略地形モデル	. 81
	3.6	初期水位分布計算の方法	. 86
		3.6.1 浅い断層に対する地盤変動量解析手法	. 86
		3.6.2 水平変動を考慮した地盤変動量解析手法	. 92
		3.6.3 梶浦フィルターの検討	. 94
	3.7	津波予測計算の結果	. 98
		3.7.1 津波高さ予測計算の条件	. 98
		3.7.2 最大水位上昇量	. 99
		3.7.3 津波到達時間	108

	3.7.4 代表点での水位時系列変化	
	3.7.5 津波高さの評価地点の検討	
	3.7.5.1 既存の検討事例による最大水位上昇量の評価位置	
	3.7.5.2 代表的な地域での最大水位上昇量の挙動	
3	3.8 津波高さに関わる不確実性の検討	
	3.8.1 すべり不均質によるバラツキ(σ _{不均質})の定量的検討	
	3.8.2 再現性のバラツキ(σ _{再現誤差})の検討	
	3.8.3 バラツキの打ち切り範囲の検討	
4.	確率論的津波ハザードの検討	
4	4.1 地震発生確率モデル設定の基本的考え方	
4	4.2 発生確率の設定	
	4.2.1 長期評価されている地震の発生確率	
	4.2.1.1 東北地方太平洋沖型の地震	
	4.2.1.2 単独領域の地震(三陸沖北部の地震)	
	4.2.1.3 単独領域の地震(宮城県沖の地震)	
	4.2.1.4 単独領域の地震(三陸南部海溝寄りの地震)	
	4.2.1.5 津波地震	
	4.2.1.6 プレート内地震(正断層型)	
	4.2.2 長期評価されていない地震の発生確率	
	4.2.2.1 最大クラスの地震	
	4.2.2.2 その他の連動型地震	
	4.2.2.3 震源を特定しにくい地震	
	4.2.2.4 長期評価されていない地震の発生確率の設定	
	4.2.3 設定した発生確率の確認	
4	4.3 ハザードカーブの作成	
	4.3.1 計算条件	
	4.3.2 ハザードカーブの作成結果	
5.	モデル地区を対象とした詳細ハザード評価の方法についての検討	
5	5.1 確率論的に浸水の危険度を評価した事例	
5	5.2 検討の方法	
	5.2.1 地形モデルの作成	
	5.2.2 津波予測計算の条件	
	5.2.3 沿岸での津波高さ	
	5.2.4 陸上における最大浸水深	
	5.2.5 代表点での水位時系列変化	
	5.2.6 津波の到達時間	
5	5.3 確率論的津波浸水ハザードマップへの検討	
5	5.4 まとめと課題	
6.	まとめと今後の課題	
引月	用文献	
謝辞	辞	

巻末資料

津波解析結果抽出地点図集

付属資料(付属 DVD)

- 付属資料1 特性化波源断層モデル図集
- 付属資料2 津波予測計算結果図集

1. はじめに

1.1 経緯

2011 年東北地方太平洋沖地震によって津波 による甚大な被害が発生した.この地震は従前 の防災対策の想定を上回る規模であり,それに 伴って東北日本の太平洋岸全域が歴史上稀に 見る巨大な津波に見舞われた.この地震・津波 の経験から,従前の防災対策全般に多くの課題 があることが指摘されている.また一般市民に おいても,過去に経験したことの無いほど大き な規模の災害(地震・津波)が存在するとの意 識が生まれ,災害への備えの必要性,対策の在 り様が被災地の行政や住民のみならず広く認 識されるようになっている.

この大災害の経験に基づいて,災害基本法が 2012年に一部改正されるとともに,中央防災 会議では2011年東北地方太平洋沖地震の発生 直後より「東北地方太平洋沖地震を教訓とした 地震・津波対策に関する専門調査会」

(http://www.bousai.go.jp/kaigirep/chousakai/ tohokukyokun/index.html)を発足させ、津波の 防災対策全般の見直しの契機とし、近い将来に 発生すると懸念されている南海トラフ沿いや 相模トラフ沿いの巨大地震について防災基本 計画などを改めて策定した(中央防災会議, 2014a, 2014b).

さらに、国は「津波防災地域づくりに関する 法律(平成 23 年法律第 123 号)」を制定し、都 道府県には津波浸水想定の実施を,市町村には 防災地域づくりのための推進計画を作成する ことを求めている.このような施策を支援する ため国は「津波浸水想定の設定の手引き」(国 土交通省・国土技術政策総合研究所, 2012) を策定した.このような動きに伴って,海岸線 を持つ多くの都道府県では、2011年~2014年 にかけ浸水範囲を想定する作業を行っており, その成果は浸水予測図として市民に公開され ている (例えば, 茨城県, 2012). 都道府県の 想定においては,過去に発生した大地震を参考 としつつも、当該地域に被害を与えうる巨大な 地震を各都道府県が独自に設定し,それに伴う 津波浸水区域を設定することが多いため,隣接 する都道府県による津波浸水想定の結果に差 異が見られることがある点などが課題とされ ている.

地震調査研究推進本部は一連の海溝型地震 についての長期評価の見直しに着手し,現在ま でに日本海溝沿いの地震評価の改訂(地震調査 研究推進本部地震調査委員会(以下,地震調査 委員会と呼ぶ),2011)及び南海トラフ沿いの 地震評価の改訂(地震調査委員会,2013)をお こないその結果を公表している.さらに,2013 年(平成25年)3月には,地震調査研究推進 本部地震調査委員会に津波評価部会を設置し, 地震により発生する津波の予測手法を検討す るとともに,それを用いた津波の評価を行うこ ととし,そのための検討を現在実施中である.

国立研究開発法人防災科学技術研究所では, 地震調査研究推進本部における津波評価に関 わる取組みと関連して,全国を対象とした津波 ハザード評価手法の開発研究プロジェクトを 2012 年度に立ち上げた. このプロジェクトで は地震調査研究推進本部による長期評価およ び地震動予測地図を踏まえ,科学的知見に基づ いた最大津波高さ等の評価を行い,津波ハザー ド情報(発生確率,沿岸最大津波高さ等)を広 く提供することを目的とした研究を進めてき た.本報告書では、当プロジェクトの 2012 年 度,2013年度及び,2014年度の実施内容をも とに、日本海溝沿いで発生する地震津波による 沿岸最大津波高さに関わるハザード評価につ いて,現在までにおこなってきた手法の検討及 び,それに基づく津波ハザード評価結果につい て取りまとめる. なお, 本報告書の内容は将来 のさらなる検討によって改訂されるべきもの を含んでいることに注意されたい.

1.2 全国を概観した確率論的津波ハザード評価の概要

将来発生する可能性のある津波について,そ の津波高さに関わるハザード評価を行うとき, 歴史記録や観測事実などの過去の事例のみを 考慮して,ある特定の想定地震・津波を設定し, 津波を評価する従来の手法の限界は 2011 年東 北地方太平洋沖地震の規模がそのような方法 によって予測できなかった事実が明白に物 語っている.この反省から,例えば南海トラフ 沿いの地震評価(地震調査委員会, 2013)は, 将来発生しうる地震の発生時期や規模の不確 実性とともに,不均質すべりの多様性なども考 慮され、その評価が改訂されている. このよう な不確実性をともなう自然現象を扱う 1 つの 技術的な枠組みとして確率論的ハザード評価 の方法がある1. 確率論的ハザード評価の手法 は「全国地震動予測地図」(地震調査研究推進 本部, http://www.jishin.go.jp/main/p hyoka04.htm) においてすでに採用されており,また特定重要 施設に対するハザード評価という観点から,土 木学会原子力土木委員会津波評価部会(2009) や原子力安全基盤機構(2014)の津波ハザード 評価においても積極的に取り入れられている.

本報告書においては,津波発生原因の大半を 占める沈み込むプレートの運動に伴って発生 する海溝型地震を対象に,それに伴って発生す る津波に関する確率論的ハザード評価を広域 的に行うための手法を検討するとともに,日本 海溝沿いの海溝型地震を例にとりその津波ハ ザード評価の試算を行った.試算の手順の概要 は以下の通りである;

 地震調査委員会(2011)の日本海溝沿いの 地震活動評価における地震の分類を参考 に、日本海溝(三陸沖北部から房総沖まで の範囲)の将来の地震活動をモデル化する. この場合、地震調査委員会(2011)によって 評価されている地震のうち複数の領域を 震源域とする地震や、繰り返し発生する地 震として評価されている地震を上回る規 模の地震、単独の領域で発生しうる可能性 のある地震よりも小規模な背景的な地震 活動の地震(本報告書の試算では Mw7.0~ Mw8.3 の地震)を考慮することにより, Mw7.0 から Mw9.4 までの規模の地震につ いて,特性化波源断層モデルを設定するこ とによってモデル化を行っている.

- 2) モデル化した地震の発生確率を評価する. ここでは,発生確率を設定するにあたって, 2 通りの地震の発生確率モデルを考える. 1 つ目は,想定するすべての地震は定常ポ アソン分布で表現される確率過程(定常ポ アソン過程あるいは単にポアソン過程)に 従って発生すると仮定する発生モデルで ある.2 つ目は,地震調査委員会の地震評 価で BPT(Brownian Passage Time)分布に従 う更新過程による発生確率が与えられて いる地震についてはその確率を用い,それ 以外の地震については定常ポアソン過程 を仮定した発生確率の双方を用いた混合 モデルである.この2通りのモデルについ てそれぞれ確率を設定した.
- 3) モデル化された地震による津波高さを推定する手法として、数値計算(シミュレーション)によって得られる沿岸での津波高さの計算値から最大水位上昇量を採用した.地震の発生の位置や規模が同じであってもすべり分布が異なると沿岸に来襲する津波の様相が異なること、津波伝播とくに沿岸域の津波の挙動には強い非線形性が認められることなどの理由から、全国地震動予測地図で地震動を推定するために用いられているのと同種の簡易的手法による津波高さの推定は採用しなかった.
- 4)数値計算によって、想定した波源断層モデルの数Nに相当する、ある沿岸地点でのN個の最大水位上昇量を得る.ある評価期間T内に、ある沿岸地点が、ある基準高さhを超える津波Hに見舞われる確率P(超過

 ¹ 津波ハザード (tsunami hazard) という用語は、政府 間海洋学委員会 (IOC, 2013) によれば、ある地点にお いてある規模の津波が来襲する「確率」と定義されてい る.(原文: The probability that a tsunami of a particular size will strike a particular section of coast.)

確率)を、各々の波源断層モデルの発生確 率および沿岸地点における津波高さの予 測値(最大水位上昇量)から合成する.こ の合成情報を、縦軸に超過確率 P、横軸に 対応する基準高さhをプロットした、ハザ ードカーブとして表現する.ハザードカー ブの合成にあたっては、地震の発生確率モ デルとして上記2通りの設定をしたことか ら、それぞれの発生確率モデルを採用し、 2通りのハザードカーブを試算する.

1.3 地域を限定した確率論的津波浸水ハザー ド評価手法の検討の概要

地方自治体や市民レベルで津波災害の抑止, 減災などの方策を検討する場合には,沿岸での 津波高さのみならず,浸水範囲,浸水深さ,到 達時刻など津波の陸域への遡上に関わる情報 が必要である.しかし,陸域への津波の遡上現 象を正確に評価するには,沿岸での津波高さの 予測をする場合に比べ一段と精緻な計算を実 施する必要があり、そのためには沿岸域(津波 が遡上する可能性がある陸地及び沿岸海域で の引き波や津波の反射・回折などの現象を考慮 すべき範囲)について地形を詳細にモデル化す る必要がある.「津波浸水想定の設定の手引き」 (国土交通省·国土技術政策総合研究所, 2012) では、遡上解析を行うためには 10 m 程度以下 の詳細さの地形モデルが必要であるとしてい る.しかし全国の沿岸を対象にこのような詳細 さで数値化している地形データは今のところ まだ整備の段階にある(例えば,国土地理院, 2013).

このような技術的な条件があるものの,評価 対象の地域をある範囲に限定することにより, 確率論的津波浸水ハザードの評価方法に関す る手法や考え方を検討することは可能である. 本報告書では,確率論的津波浸水ハザードの評 価方法を検討した.検討の概要は以下の通りで ある;

 ある特定の地域(本検討では岩手県南部県 境に位置する陸前高田市の広田湾沿岸を 選定している)において,堤防を越流し津 波が遡上する可能性のある最大水位上昇 量となる波源断層モデル群を選定する.

- 2) 選定した波源断層モデルすべてについて 詳細地形モデルを用いた津波伝播・遡上計 算を再度行って、浸水の範囲、浸水の深さ などを推定する。
- 3) 選定した波源断層モデルの地震の発生確 率と特定の地点での浸水発生頻度から、陸 上の浸水ハザードを評価し、それに基づい て浸水確率予測マップを試作する。

本資料で検討した手法の妥当性の確認や高 度化,および全国への展開する方法については, 情報の利活用の側面からの議論と検討を踏ま える必要もあることから,引き続き今後の課題 とする.

なお,本資料での津波の高さに関わる用語に ついては以下のように取り扱った.「津波高さ」 は,一般に沿岸での津波の大きさや規模などを 表す際の海面の高さについての総称として使 用した.特に断らない限り津波ハザードを評価 する指標として,津波によって発生する沿岸で の最大の海面の高さを「最大津波高さ」あるい は「最大水位上昇量」と呼ぶことを基本とした. ここで,「最大水位上昇量」は本資料の検討の ために行った津波予測計算(シミュレーション) による海面変動計算結果であり, 地震直後の静 水面(地震直前に東京湾平均海水面 T.P.0m に 位置していた静水面が,想定する地震の活動に 伴う地殻変動によって沈降あるいは隆起した 静水面)から測った海面の最大水位と定義する. その他の例外として, 文献等を引用したところ においては当該文献での用例に従った場合も ある.

2. 確率論的津波ハザード評価の方法に関する 既往技術の概観

2.1 確率論的津波ハザード評価の手法に関する 既往研究

2.1.1 地震・津波のハザード評価の手法

本節では,地震および津波の確率論的ハザー ド評価の手法について,既往研究に基づいてレ ビューする.現段階の確率論的津波ハザード評 価はこれに先行して防災科学技術研究所が研 究開発してきた確率論的地震ハザード評価の 枠組みを基にしており,ここではまず確率論的 地震ハザード評価の手法について述べる.つぎ に,確率論的地震ハザード評価手法の流れを踏 まえた確率論的津波ハザード評価の手法につ いて概観する.

2.1.1.1 確率論的地震ハザード評価手法

地震調查研究推進本部地震調查委員会(以下, 地震調査委員会と呼ぶ)は「確率論的地震動予 測地図」の作成の中で確率論的地震ハザード評 価の手法を議論してきた. 日本国内には多くの 活断層や海域で発生する大地震のほか, どこで 起きるか特定しにくい地震もあり、これらの地 震によって生じる強い揺れ(強震動)に見舞わ れる危険性は全国どこにでもある. 確率論的地 震動予測地図作成における確率論的地震ハザ ード評価は,ある地点において将来発生する地 震動の強さ,評価期間,ある地震動強さを超え る確率,の3つの関係を評価するものである. そして,3つのうち2つを固定し,残る1つを 求めたうえ,それの空間的分布を地図上に表現 したものが確率論的地震動予測地図となる(防 災科学技術研究所, 2004).

確率論的地震ハザード評価は不確実性の存 在を前提として地震動を評価している.不確実 性は,偶然的不確実性(aleatory uncertainty)と認 識論的不確実性(epistemic uncertainty)の2つに 大別される.偶然的不確実性は,現象固有のラ ンダム性(偶然性)によるもので,如何に精緻 な予測モデルを得ることができ,これを用いて もそれ以上減じることができないという性質 を有する.

一方、認識論的不確実性は、現象に関する知

識の不足によるもので,より優れた予測モデル が将来得られれば減じることが期待される.実際の確率論的ハザード評価においては,研究者 間の意見の相違は認識論的不確実性に分類さ れ,予測すべき現象のモデル化やそのハザード 評価プロセスに含まれる不確定性等を表現し ている.

以下に,「確率論的地震動予測地図」における ハザード評価の全体な流れを説明する.①地震 の発生可能性の評価,②震源モデルの設定,③ 地下構造モデルの設定,④強震動の予測計算, ⑤ハザードカーブの作成,の手順となる(図 2.1-1).

地震の発生可能性の評価

活断層調査や過去の地震発生記録および解 析結果等に基づいて,どこでどのような地震が 発生するか想定する.想定する各地震の発生確 率は,基本的に地震調査委員会の長期評価を参 考にして設定する.長期評価がされていない地 震については,地震が発生する地域の過去の地 震活動の規模別頻度分布から,規模別の確率モ デルを作成して設定する.発生確率のモデルと しては,発生確率が時間の経過に対して一定で ある定常ポアソン過程と,前回の地震発生から の経過時間によって発生確率が変化する更新 過程がある.更新過程の場合,ハザード評価を 行う基準日の設定により,発生確率が変化する こととなる.発生する地震の規模のバラッキや

図 2.1-1 確率論的地震ハザード評価の流れ

手法そのものに含まれる誤差は,現状では予測 不可能と考えられる不確実性であり,適当な確 率モデルを適用してバラツキを与えることで, ハザードカーブの中で考慮される要因となる. ② 震源モデルの設定

揺れの強さは、一般的に震源断層の地震規模 が大きいほど、また震源断層に近いほど大きく なる.ここでは強震動の評価を行うために、① で想定した全ての地震に対し長期評価に基づ いて震源となる断層面の位置形状、地震規模等 のモデルを設定する.長期評価がされていない 規模の小さい地震については、評価領域の特徴 に応じて一様に震源を設定する.

③ 地下構造モデルの設定

地震動の強さは、一般に伝播する距離と共に 減衰するが、地下浅部の速度構造の影響により 大きく変化する.そこで、震源から地震基盤ま での広域的な速度構造モデル、地震基盤から工 学的基盤までの深部構造モデル、さらに強震動 評価に最も影響の強い地表付近の浅部地下構 造モデルを作成し、それらのモデルを用いて強 震動を評価する.

④ 強震動の予測計算

地表の揺れの推定は、2 段階の計算で行う. まず,評価対象領域の工学的基盤上面での揺れ を推定し,次に③で得た浅い地盤構造の影響を 加えて地表の揺れの強さを算出する.「確率論 的地震動予測地図」では,工学的基盤での揺れ の推定には,経験的に得られた「距離減衰式」 によって推定する方法を用いている.

⑤ハザードカーブの作成

各地震の強震動の推定には,地震発生位置や 震源メカニズムの不確実さや距離減衰式の誤 差,地下構造モデルの誤差など,様々な不確実 性が内在している.これらの不確実性は「偶然 的不確実性」として確率モデルによって考慮し, 個々の強震動予測結果から確率分布へ変換す る.得られた確率分布に対し,①で設定した発 生確率を反映することで,個々の地震について 強震動の超過確率分布が得られる.最後に,全 ての地震の影響を統合した条件付き超過確率 を計算し,対象地点のハザードカーブを作成す る. 以上の手順に基づいて,各評価地点において ハザードカーブを計算する.「確率論的地震動 予測地図」はこのハザードカーブから,例えば 「30年間の超過確率 6%となる地震動強さ」や 「震度 6 弱となる 50 年間の超過確率」などを 分 布 図 と し て 作 成 し て い る (http://www.jshis.bosai.go.jp から参照できる).

2.1.1.2 確率論的津波ハザード評価の手法

日本国内における確率論的津波ハザード評価手法の既往研究としては、土木学会原子力土 木委員会津波評価部会(以下、土木学会と呼ぶ) が提案している「確率論的津波ハザード解析の 方法」(土木学会、2009)と、独立行政法人原子 力安全基盤機構(以下,JNESと呼ぶ)が実施し た確率論的津波ハザード評価(2012,2014)が 挙げられる.これらは基本的に確率論的地震ハ ザードの評価手法を踏襲しており、地震調査委 員会による地震活動の長期評価を基にして、地 震を想定してその発生確率を設定し、津波によ る最大水位上昇量を評価している.

図 2.1-3 津波予測計算の概念図

確率論的津波ハザード解析の全体の流れを, 図 2.1-2 に示す.①地震の発生可能性の評価, ②震源モデルの設定,③海底・陸域地形のモデ ル化,④津波予測計算の実施,⑤ハザードカー ブの作成,の手順である.以下に各ステップに ついて説明する.

地震の発生可能性の評価

地震ハザードと同様に、どこでどのような地 震が発生するか想定する.ここで、津波は海域 の地震でのみ生じるため、対象とする地震は海 域で発生するものに限る.

土木学会(2009)の確率論的津波ハザード解 析では,規模が小さく頻度の高い背景的地震を 考慮しやや小規模の津波も考慮しているのに 対し,JNES(2012,2014)では地震調査委員会 (2004,2011)によって評価された規模の大きい地 震のみを想定し,彼らの手法の適用事例を示し ている.また,津波の場合には日本国外の遠方 で発生した地震による津波(遠地津波)の影響 も無視できないが,これまでの津波ハザード評 価では遠地津波は未だ考慮はされておらず,今 後検討されていく必要があると考えられる.

② 震源モデルの設定

津波の規模は、一般的に地震規模が大きいほ ど、また震源域に近いほど大きくなる.ここで は津波の評価を行うために、地震調査委員会に よる地震評価に基づいて地震の震源となる断 層面の位置・形状、地震規模等を設定する.

土木学会(2009)の津波ハザード解析では,基本的には地震を一様すべりの矩形断層として モデル化しているが,南海トラフ沿いなどの一 部の地震に対してすべり不均質モデルを考慮 している.JNES(2014)においても,基本的には 一様すべりモデルを用いているが,東北地方太 平洋沖地震の知見から,千島海溝・日本海溝沿 いで発生し得るプレート間地震に対してすべ り不均質モデルを考慮している.

③ 海底・陸域地形のモデル化

土木学会(2009)と JNES(2014)ともに,津波の 評価は有限差分法などの詳細な数値計算によ っている.これは地震動とは異なり,津波は伝 播する地形の影響を強く受けるために,単純な 距離減衰式などの簡易的手法によって推定す ることが難しいからである.正確な津波計算を 行うために,海底及び陸地の地形をメッシュデ ータとしてモデル化する.メッシュのサイズは 要求される精度に応じて決定する.

④ 津波予測計算の実施

津波のハザードを表す指標としては,沖合い または沿岸での津波高さや流速・波力,陸地で の津波の遡上域や浸水深,さらに津波到達時間 などがある.土木学会(2009)の場合には,発電所 前面での最大水位上昇量をもって津波を評価 している.また JNES(2014)の場合にも汀線での 最大水位上昇量を津波の指標としている¹.

津波波力や陸域の遡上を正確に推定するた めには、3次元流体解析のような計算負荷の非 常に高い津波計算が必要になる.これらを指標 とした確率論的津波ハザード評価は現在一部 で基礎的研究として行われているが、一般的な 評価方法とはなっていない.最大水位上昇量以 外の指標の必要性については今後検討される 必要がある.

各地震によって発生する津波の沿岸地点で の最大津波高さは数値解析によって推定する. 図2.1-3に津波予測計算の概念図を示す.まず, 震源モデルから海底の地盤変動量を計算する. 基本的に津波は長波なので地盤変動量をその まま津波の初期水位と仮定し,地形モデルを用 いて津波伝播の数値解析を行う.最大水位上昇 量の決定には,地震発生から十分な時間計算し た上で最大値を取り出す必要があり,必要な計 算時間は震源位置と観測点の距離によって変 わる.

⑤ ハザードカーブの作成

想定した地震によって生じた津波をある地 点で観測した場合に観測されるであろう最大

¹ JNES(2014)においては,評価の対象とする施設の地域 的特徴に応じ,施設前面海域の沖合(水深 150m, 100m, 50m, 25m) での津波高さを指標として評価することと している. 汀線での津波高さは,参考値とされている.

津波高さの推定には、地震の発生位置や震源メ カニズムの不確実性や津波予測計算の再現誤 差など、様々な不確実性が内在している.これ らの不確実性の要因は先述した認識論的不確 実性と偶然的不確実性に分類される.不確実性 の扱い方は、土木学会(2009)と JNES(2014)でそ れぞれ異なっており、具体的な相違点は、2.1.14 節で述べる.

地震ハザードと同様に,個々の津波計算結果 と①で設定した地震の発生確率を組み合わせ ることで個々の地震について最大津波高さの 超過確率分布が得られる.最後に,最大津波高 さの超過確率分布を全ての地震について統合 し対象地点のハザードカーブが計算される.

2.1.1.3 発生確率の評価方法

確率論的津波ハザード評価では,地震の長期 的な発生評価に基づき,地震発生の時系列を更 新過程または定常ポアソン過程に従うと仮定 して地震の発生確率を評価する.更新過程は前 回の事象からの経過時間によって発生確率が 変化する確率モデルである.更新過程の確率モ デルとしては,物理的解釈が容易な BPT 分布

(Brownian Passage Time 分布)を採用すること が妥当であると考えられている(地震調査委員 会,2001).繰り返し発生する固有地震は基本的 に BPT 分布を用いて発生確率を評価する.一方, 定常ポアソン過程は発生確率が時間変化しな い確率モデルであり,偶発的に起こる事象を表 している.過去の活動データが乏しく BPT 分布 を適用できない固有地震や,震源を特定できな い小規模の地震に対しては定常ポアソン過程 が適用される.

BPT 分布の確率密度関数は次の式で表される.

$$f(t; \mu, \alpha) = \sqrt{\frac{\mu}{(2\pi\alpha^2 t^3)}} \exp\left\{-\frac{(t-\mu)^2}{(2\mu\alpha^2 t)}\right\}$$
(2.1-1)

ここで,tは経過時間であり,分布の平均はμ, 分散は(μα)²である.地震発生の時系列が BPT 分 布を用いた更新過程に従う場合,時刻 T から ΔT 年後までに次の地震が起こる確率は,

$$P(T, \Delta T) = \frac{\int_{T}^{T+\Delta T} f(t)dt}{\int_{T}^{\infty} f(t)dt}$$
(2.1-2)

である. (2.1-1)および(2.1-2)式より, BPT 分布 を用いた更新過程で地震の発生が従う場合の 地震の発生確率は, 平均発生間隔μとバラツキ α, 経過時間 T, 評価期間 ΔT の 4 つの値から求 められることがわかる.

定常ポアソン過程では、1 年間あたりの地震 発生頻度λの逆数で表現される平均発生間隔 μ を用いて ΔT 年間の発生確率を次式で表現する.

$$P(\Delta T) = 1 - \exp(-\Delta T/\mu)$$
 (2.1-3)

2.1.1.4 津波ハザード評価における不確実性の 扱い

土木学会(2009)と JNES(2012, 2014)の確率論 的津波ハザード評価における不確実性の扱い について述べる. **表 2.1-1** に不確実性の扱い方 を比較する. なお, JNES(2014)は内容的に JNES(2012)とほぼ同じなのでここでは, JNES(2012)をもとに議論を進める.

表 2.1-1 土木学会(2009)と JNES(2012)での確率 論的津波ハザード評価における不確実性の扱い方

	土木学会 (2009)	JNES (2012)
認識論	 地震発生領域 	・平均発生間隔とバラ
的不確	・マグニチュードの範	ツキ
実性	囲	 破壞伝播速度
	・すべり分布(一様/	・計算誤差のバラツキ
	不均質)	の大きさ
	・断層パラメータ	
	・平均発生間隔とバラ	
	ツキ	
	・計算誤差のバラツキ	
	の大きさ	
	・バラツキ分布の打ち	
	切り範囲	
偶然的	・マグニチュードのバ	・マグニチュードのバ
不確実	ラツキ	ラツキ
性	・波源位置のバラツキ	・波源位置のバラツキ
	・潮位のバラツキ	・破壊開始点のバラツ
	・計算誤差のバラツキ	キ
		・計算誤差のバラツキ
		・すべり分布のバラツ
		+

(1) 土木学会(2009)

土木学会(2009)では、不確実性を「偶然的不確 実性」と「認識論的不確実性」の2つに分け、 偶然的不確実性は確率モデルで、認識論的不確 実性はロジックツリー手法によるハザード曲 線群によって考慮している.ロジックツリー手 法では、専門家の意見を反映させてロジックツ リーの分岐毎に重み付けをする.各分岐ルート の重みの積から各ハザードカーブの重みが設 定される.重み付けされたハザード曲線群から、 重みが平均となるハザードカーブや、専門家の コンセンサスがどれくらいの割合で得られる かを表すフラクタイルハザードカーブを作成 し、認識論的不確実性を考慮する.

土木学会(2009)の確率論的津波ハザード解析 手法で認識論的不確実性に分類された不確実 性の要因は以下の7点である.

① 地震発生領域

地震発生領域は基本的に地震調査委員会の 地震評価で定めた領域区分に準じて設定する が,津波地震や正断層地震の場合に断層が領域 をまたいで破壊するかしないかが議論になる ため,ロジックツリーの分岐で対処する.

② マグニチュードの範囲

「確率論的地震動予測地図」では固有地震の マグニチュードを 1 つの値に限定しているが, 土木学会の津波ハザードでは地震規模に不確 実性を考慮するため,マグニチュードに幅を与 えている.具体的には,過去の固有地震の地震 規模を基準とし,その分布幅は 0.3 または 0.5 と して分岐させる.マグニチュードの範囲は,既 往の最大規模がとりうる可能性を調べ,その範 囲を複数の場合で代表させるなどして,ロジッ クツリーの分岐で対処する.

③ 波源モデルのすべり分布

津波高さの推定は「原子力発電所の津波評価 技術」(土木学会,2002)を基にしており,一様 すべりの矩形モデルによって津波予測計算を 行う.一方で,南海トラフ沿いなどの一部の地 震に対しては一様すべりモデルとすべり不均 質モデルの両方を計算して,ロジックツリーの 分岐で対処している.

④ 断層パラメータの変動の考慮の有無

津波の数値計算結果は、モデル断層の大きさ、 深さや走向・傾斜角などの断層パラメータの影響を受ける.1つの数値計算は断層パラメータ のある特定の組合せを用いたときの結果であ るため、それぞれの断層パラメータの変動をど のように考慮するかが問題になる.観測値と計 算値の残差のバラツキ(以下,計算誤差のバラ ツキ)に対して「断層モデルの変動によるバラ ツキ」を付与するか、「断層モデルの変動」を考 慮して計算を行うか、ロジックツリーの分岐で 対処する.

⑤ 平均発生間隔とバラツキ

固有地震の平均発生間隔が過去の地震の発 生情報に基づいて設定される場合に,平均発生 間隔の誤差(信頼度)を考慮し,誤差の大きさ に基づいて分岐を設定する.BPT分布を用いた 更新過程で発生確率を求める場合には,平均発 生間隔のバラツキαも設定する必要があり,α の値も誤差を考慮して分岐を設定する.

⑥ 計算誤差のバラツキの大きさ

確率論的津波ハザード評価では,数値計算に よる津波高さの推定値が,ある特定の地震が繰 り返し発生した場合に,特定地点でどの程度ば らつくかを計算誤差の「時間的な」バラツキと して確率モデルで評価する.土木学会(2009)で は,計算誤差のバラツキを定量的に評価するに あたって,エルゴード性を仮定することで,既 往津波の観測値と計算にもとづく最大津波高 さとの比の空間的なバラツキを示す相田(1977) による指標 κによって,計算誤差のバラツキに 置き換える考えを導入している.また,エルゴ ード仮定が成立せずに時間的なバラツキが空 間的なバラツキよりも小さくなるという可能 性も考慮して, κの値は 1.25, 1.35, 1.45, 1.55 の 4 通りの分岐を設定している.

⑦ バラツキ分布の打ち切りの範囲

土木学会(2009)では計算誤差のバラツキは対 数正規分布で表現するが、この際に分布の打ち 切り範囲を設定する必要がある.土木学会では 「打ち切りを行わない」場合と「分布の両端 1% に入る現象は実際には起こらないと判断し対 数標準偏差の±2.3 倍で打ち切る」場合の 2 通 りを考慮し、ロジックツリーの分岐で対処して いる. なお「打ち切りを行わない」場合には実 際の計算では対数標準偏差の±10 倍で打ち切 っている.

また,偶然的不確実性として,土木学会(2009) は,以下の4つの不確実性を分類している.

① マグニチュードの不確実性

マグニチュードの不確実性の確率モデルと して、規模が小さく頻度が高い「背景的地震」 に対してはグーテンベルグ・リヒターの関係式 が用いられる.一方で、固有地震のマグニチュ ードの不確実さには、認識論的不確実性②で設 定したマグニチュード範囲の中で一様分布の 確率モデルを適用する.

波源位置の不確実性

背景的な小規模の地震及び固有地震は発生 領域内を敷き詰めるように、複数の波源を設定 する.波源位置のバラツキには、一様分布の確 率モデルを適用する.

③ 潮位

潮汐を確率過程として考慮に加え,平均潮位 などを仮定して数値計算した結果に,潮位の確 率モデルで表現された潮汐を合成することで 津波高さを推定する.過去の潮位記録から潮位 出現頻度分布を求め,潮位の確率密度関数を作 成し確率モデルとして適用する.

④ 計算誤差

計算値と観測値の残差のバラツキは,対数正 規分布に従うものとしてモデル化する.バラツ キの大きさは,相田(1977)の指標κの値を基に して求める.

(2) JNES(2012)の津波ハザード

JNES(2012)の津波ハザードの評価手法は,先行して実施された土木学会(2009)の手法を参考にしている.土木学会(2009)との相違点としては,

- ・地震発生領域やマグニチュード範囲、断層 パラメータは地震調査委員会の地震評価に 基づいて設定し、不確実性は考慮しない
- ・地震発生時の破壊伝播の影響を考慮している
- 固有地震のみを対象としている
- ・計算誤差のバラツキの分布は対数標準偏差の ±2.3 倍で打ち切り,不確実性は考慮しない
- ・ 潮汐の影響は考慮しない

などの点である.認識論的不確実性はロジック ツリーの分岐によりハザード曲線群を作成す ることで考慮しているが,分岐の重みは基本的 に一様重みとしている.

JNES (2012)の津波ハザードで認識論的不確 実性に分類された不確実性の要因は以下の3点 である.

① 平均発生間隔とバラツキ

地震調査委員会の地震評価において平均発 生間隔や BPT 分布のバラツキの値に幅がある 地震に対しては,発生確率を大・中・小の3つ の値で代表させ,ロジックツリー分岐させて, 不確実性を考慮している.

② 破壞伝播速度

破壊伝播速度は 1.0 km/秒, 1.5 km/秒, 2.0 km/ 秒の 3 通りの値で分岐させている.

③ 計算誤差

土木学会と同様に相田の指標 κ を用いて, 1.25, 1.35, 1.45, 1.55 の 4 通りの値で分岐させて いる.

JNES(2012)の津波ハザードで偶然的不確実 性に分類された不確実性の要因は以下の5点で ある.

① マグニチュードの不確実性

一つの固有地震に対し複数のマグニチュー ドの地震を設定する場合には,一様分布の確率 モデルで不確実性を考慮する.

② 波源位置の不確実性

土木学会と同様に,波源位置の不確実性は一 様分布の確率モデルで考慮する.

破壊開始点の不確実性

破壊伝播を考える場合,破壊開始点の違いに よって津波高さが変わってくる. JNES の津波 ハザードでは,破壊開始点を3通り設定し,一 様分布の確率モデルで考慮した.

④ 計算誤差

土木学会と同様に,計算誤差は対数正規分布 の確率モデルで考慮し,バラツキの大きさは相 田(1977)の指標κを参考にしている.

⑤ すべり分布の不確実性

東北地方太平洋沖型の地震の場合には,不均 質すべりモデルを適用する.一様すべり,大す べり域をもつ不均質すべりモデル,これに加え 超大すべり域をもつ不均質すべりモデルの3種 類の不均質すべり分布を設定した上で,一様分 布の確率モデルを適用している.

2.1.2 海外での研究事例

確率論的津波ハザード評価に関しては,いく つかの先行研究が海外の研究者によって試み られている.

Geist (2002) は確率論的津波ハザード評価の 先駆的な研究を行っている. 断層面上のすべり 分布をランダムに与えた不均質すべり断層モ デルを複数考え, それらによって予測される沿 岸での最大水位上昇量の不確実性について調 べている. Geist は世界中の津波記録から, 津波 マグニチュードと Mwの関係を調べ、両者が簡 単な比例関係になく, 津波の場合にはマグニチ ュードだけでなく断層パラメータの影響が強 いことを示したうえで,確率論的津波ハザード 評価を行う上での不確定性の一つとしてすべ り分布の不均質を挙げ, すべり分布が沿岸での 最大水位上昇量に与える影響を調べるパラメ ータスタディを行った. 津波の数値計算は 1995 年メキシコ Colima-Jalisco 地震を対象とし、線 形長波理論を用いて解いている. 地震断層の巨 視的断層パラメータ(位置,形状,規模)は Mendoza and Hartzell (1999)の解析によるものと し、Herrero and Bernard (1994) によるすべり分 布の波数スペクトルモデルを用いて, ランダム なすべり分布モデルを100ケース作成している. すべり不均質をもつ断層モデルから計算され る沿岸波高のバラツキの大きさは観測地点に よって大きく異なり,バラツキの大きさを示す 変動係数²は観測点によって 2 倍程度の差があ った. Geist (2005) はアメリカ・カリフォルニ アのカスケディア沈み込み帯で、 ランダムなす べり分布による沿岸波高のバラツキについて 調べている.

Geist and Parsons (2006) は確率論的津波ハザ ード評価手法のアウトラインを構築するため にメキシコ・アカプルコとアメリカ・カリフォ ルニアのカスケディア沈み込み帯においてハ ザード評価のケーススタディを実施した.彼ら の提案した手法は、Cornell (1968) による確率 論的地震ハザード解析の手法を基にしており, 近地津波のみを対象としている.まずアカプル コでのケーススタディでは、沈み込むプレート 境界面に 720km×60km の地震発生領域を考え, その領域内に200個の地震モデルを作成し、線 形長波理論を用いて数値計算を行った. 地震の マグニチュードは、M7からM8.5までの範囲で あり,モデルごとには発生頻度をグーテンベル グ-リヒターのマグニチュード-頻度関係式に従 うものとした.地震の発生位置はランダムとし, すべり分布は Geist (2002) と同様にすべり分布 の波数スペクトルモデルからランダムに200個 作成した. 地震は, 定常ポアソン過程を仮定し ランダムに発生するものとし,過去の対象地震 発生域での活動履歴から発生頻度を求めた. 求 められたハザードカーブは, 観測によって得た 沿岸での最大津波高さの超過頻度分布とよく 整合していた.カスケディア沈み込み帯でのケ ーススタディも、アカプルコの場合と同様の手 法により, M7 から M9 の地震を 100 通り作成 して実施した.遠地津波の観測記録による1m 以上となった波高の発生頻度とハザードカー ブの結果を比較したところ、1mのレベルでは 遠地津波の頻度が高くなることが分かった.

複数の地震を想定した統合的な確率論的津 波ハザード評価は Tsunami Pilot Study Working Group (2006;以下, TPSWGと呼ぶ)によって 行われた. TPSWG はアメリカ合衆国連邦緊急 事態管理庁(FEMA)による洪水保険料率マップ 作成のためのガイドラインとして,近地地震・ 遠地地震・海底地すべりなど様々な要因から生 じる津波に対してのリスク評価をすることを 目的として,アメリカ合衆国オレゴン州をモデ ル地区として津波ハザード評価を試みている. ただし,海底地すべりに関しては発生モデルの 検討などが進んでいないこともあって将来導 入するとして,近地津波と遠地津波に限ったハ ザード評価となっている.評価手法は Geist and

² 変動係数: coefficient of variation, 標準偏差を平均値で 除したもの

Parsons (2006)を基にしているが、津波計算手法 は非線形長波理論を用い、10mメッシュの地形 モデルによる数値計算で, 遡上も含めて計算す ることで浸水評価を行っている.近地津波の震 源としては, Geist and Parsons (2006) が設定し たカスカディア沈み込み帯を震源域とする M9.1の地震を想定している.遠地津波の震源は, アメリカ海洋大気庁(NOAA)による震源データ ベース (FACTS) を参考に、アラスカーアリュ ーシャン地震,カムチャッカ地震,千島列島地 震, チリ地震などの M8.2 から M9.5 の地震を想 定している.アラスカーアリューシャン地震は 震源域の区分を2つに分けるか3つに分けるか 議論が分かれるため、これは認識論的不確実性 としてロジックツリーの分岐で考慮している. 各地震の発生確率はアメリカ地質調査所 (USGS) O National Seismic Hazard Mapping Program を参考にして、定常ポアソン過程を仮 定して設定している. 陸域も含めた全てのメッ シュでハザードカーブを作成し, 超過発生頻度 が 1/100 または 1/500 となる津波高さ(100 年津 波,500年津波と呼ばれる)についての地図を 作成した. 今後の検討課題として, 津波地震や カスカディカ沈み込み帯でのより小規模の地 震をハザード評価に加えることを挙げている.

以上のような先行事例を踏まえ, ナショナル プロジェクトとして国のほぼ全域に渡る沿岸 における確率論的津波ハザード評価を行って いる事例が、最近数例みられるようになった. ニュージーランドでは、Berryman (2005) が全 国の沿岸での津波高さを評価しているが,発生 域と発生する津波の特徴を考慮して, 複数の発 生源を扱っている.たとえば津波発生からニュ ージーランド沿岸まで津波伝播に要する時間 が2時間以上であることが予想される場合には, 地震による津波のみを考慮している.2時間以 内に到達する津波については,近隣の沈み込み 帯で活発な火山活動(ニューヘブリデス諸島な ど)があることから、海溝型の地震に加え噴火 活動に伴う津波発生を考慮している. さらに沿 岸で発生する津波については,陸上から海底へ の急速な土砂移動(地すべり等による)による 津波発生も検討に加えている. Berryman (2005)

の成果は,最近, Power (2013)により見直されて いる. Powerは,海岸延長約20kmを基本とした 区間を単位に,区間を代表するハザード評価 (代表ハザード曲線)を行っている.さらに, 評価値をもとに各海岸区におけるハザードへ の寄与の大きなイベントの同定を試みている.

Burbidge et al. (2008)は、2004年スマトラ島沖 地震津波の経験をもとに、スンダ海溝でのプレ ートの沈み込みに伴う地震による西オースト ラリア沿岸での確率論的津波ハザード評価を 試みた.この研究を契機に、オーストラリア地 球科学局は、ほぼ全国の沿岸の全域について水 深100 m地点における津波高さを評価し、公表 している(Geoscience Australia, 2012).

Leonard et al. (2014)は、カナダの沿岸(太平 洋沿岸、大西洋沿岸、極北地方、及びハドソン 湾などの内湾を含む)における津波ハザード評 価を試みている.太平洋沿岸地方ではプレート 境界での地震活動が活発であることから主に プレート境界地震によって発生する津波を考 慮しているが、大西洋沿岸地方については、プ レート境界型の地震(カリブ海溝沿いの地震) による津波、1929 Grand Banks地震などにみら れる大陸棚斜面での地すべりによる津波、さら にセントローレンス川沿いの地殻内で発生す る大地震による津波などを評価の対象に含め ている.

Sørensen et al. (2012)は、ヨーロッパ連合EU の津波災害リスクに関する研究プロジェクト Transfer (http://www.transferproject.eu/)の一環 として、地中海沿岸全域の沿岸について地中海 で想定しうる地震によって発生する津波のハ ザードを確率論的に評価している.地中海の場 合には、閉鎖的な海域であることから特定の地 点でのハザードには特定の海域の地震の影響 が強いことを示したうえで、その海域で地震が 発生した場合に最大津波水位が出現する時間 帯についても検討している.

そのほか、陸域への浸水についても確率論的 ハザード評価を試みている事例がある.これら については、5.1節において概観する.

2.2 津波発生源および日本周辺での地震活動 にともなう津波

2.2.1 津波発生源

海域で急激な水位変動が発生し津波として 伝播する原因には多様なものがあると考えら れている. 首藤ほか(2007)によれば,

(1) 地震による海底の地殻変動

(2) 沿岸あるいは海底での地すべり

(3) 火山噴火・カルデラ形成

(4) 隕石衝突

を津波の発生源としている.このうち,(1)を原 因とする津波は頻繁に観測されており,日本周 辺で発生する津波の多くは地震に伴って発生 している.これについては次節で改めて述べる.

地すべりに伴う津波としては,約 8,000yBP にノルウェー西方沖の大西洋で発生し,北海沿 岸に津波痕跡を残している Storegga 海底地す べりによるものがよく知られている(例えば, Masson et al., 2006).日本周辺では,2009年駿 河湾を震源とする地震(Mw 6.4)によって誘発 された海底地すべりの例が知られており,この 時には御前崎で 36 cmの津波が観測されている

(Baba et al., 2012).

火山活動に関連して発生した津波としては, 1883 年インドネシア・クラカタウ火山の噴火 に伴った津波が例として挙げることができる. この噴火では 11.5 km³ に上る噴出物が放出さ れた結果,巨大なカルデラが形成され,それに 伴って周辺沿岸に15mを超える津波が押し寄 せたとされている (例えば, Nomanbhoy and Satake, 1995). 日本では 1792 年雲仙岳の噴火 により雲仙岳眉山が崩壊し,大量の崩壊土砂が 有明海に流入したことによって大きな津波が 発生した例が知られている(いわゆる「島原大 変肥後迷惑」). この津波では, 眉山の有明海を 挟んだ対岸で最大で23mを超える津波があっ たと報告されている(都司・日野, 1993). また, 日本付近での海底での火山噴火・カルデラ形成 としては最大級の規模とされている鬼界カル デラの形成(約 7,300yBP; Volcanic Global Risk Identification and Analysis Project (http://www.bgs.ac.uk/vogripa/index.cfm) による

噴火マグニチュードは 8.1 である)においても, 津波が発生したものと考えられている(Maeno and Imamura, 2007).ただし,この津波による津 波堆積物などの痕跡が不明であることなどに より津波規模などの詳細は良くわかっていな い.

隕石が海域に落下・衝突することによる津波 は,理論的にきわめて巨大な津波となりうるこ とが示されている(例えば,Ward and Asphaug, 2002).南太平洋に約 215 万年前に直径 1~4 km の隕石が落下したことで形成されたと考えら れている Eltanin 衝突の場合(Ward and Asphang, 2002)や,メキシコ湾に 6500 万年前に巨大隕石 が落下したことによる Chicxulub 衝突による場 合(Matsui *et al.*, 2002) について津波の推定が 行われている.

アメリカ合衆国海洋大気庁(NOAA)は、歴 史記録に残る津波イベントのカタログを作成 している (National Geophysical Data Center / World Data Service (NGDC/WDS): Global Historical Tsunami Database. National Geophysical NOAA. Data Center, doi:10.7289/V5PN93H7). このカタログによれ ば、紀元前 2000 年から 2012 年までの約 4000 年間に全世界で発生したことが知られている 約2,400 あまりの津波のうち,その約77%は地 震に原因するとされている(図 2.2-1a). また, 千島海溝~日本海溝~南海トラフ~琉球海溝 ~フィリピン海溝に掛かる西太平洋域におい ても同様に、カタログでは 82%の津波が地震 を原因としたものである(図 2.2-1b).

このように,歴史的にみても地震に伴う津波 の発生頻度がきわめて高く,かつ日本付近では 地震に伴って発生した津波による大きな被害 を繰り返し被っている経験を持つことから,本 研究では地震による津波を対象として津波ハ ザードを評価することとする.さらに,地震を 原因とする津波については,プレートの沈み込 み境界で発生する地震によるものと地殻内の 断層運動による地震で発生する場合がある.プ レート沈み込み境界で発生する地震による津 波には,発生の場所として,いわゆる日本近海 a) World(N=2428) Period: BC2000 to 2012

b) around Japan(N=590) Period: BC2000 to 2012

図 2.2-1 NOAA 津波カタログによる津波発生原 因別頻度(期間:紀元前 2000 年~西暦 2012 年 末まで). a) カタログ全体の発生原因別頻度 b)日本周辺(カムチャツカ・千島~日本~韓半島・ 中国・台湾・フィリピン)の頻度.(データ出典: NOAA 'Global Historical Tsunami Database')

で発生する近地津波と,遠隔地で発生する遠地 津波と呼ばれるものがある.日本周辺では, NOAA のカタログを見るまでもなく,太平洋西 端及びフィリピン海北端ないし北西端でのプ レート境界に沿った地域で発生する地震によ り規模の大きな津波が頻繁に発生している.こ のことから,津波ハザードの評価を行う対象と しては,まず,日本付近のプレート境界で発生 する地震による津波を優先することとし,本研 究ではそれ以外の地震や地震以外の原因によ る津波については,今後の検討課題とする. 2.2.2 日本周辺での地震活動に伴う津波

日本周辺での地震活動とそれに伴う津波に 関するデータから、津波の発生の程度、規模別 分布などを整理する.整理にあたっては、以下 のカタログを参照した.

・地震活動に関するデータ

1)気象庁の地震月報(1923年1月~2011年5月)によるカタログ(気象庁, 2011)

2) 宇津(1982) 1885 年~1980 年に発生した M6以上及び被害地震のカタログ

 3) 宇佐美(1996) 「新編日本被害地震総覧」(増 補改訂版)に記載されている西暦 599 年~1983 年に発生した被害地震

・津波に関するデータ

1)渡辺(1998)「日本被害津波総覧(第2版)」
 に記載されている西暦 684 年~1996 年に日本
 及びその周辺で発生した津波

2)阿部による 「日本付近に発生した津波の規模(1498年-2006年)に記載されている津波(http://www.eic.eri.u-tokyo.ac.jp/tsunamiMt.html, 2014年7月30日参照)

まず, 1923 年~1996 年に日本周辺の海域で 発生した地震の地震規模と津波発生割合につ いて、「気象庁地震月報」における M5.5 以上の 海域で発生した全ての地震から、渡邊(1998)に よる「日本被害津波総覧(第2版)」に記載さ れている地震を対応させた.地震の規模は、気 象庁マグニチュード MIMAで、津波の規模につ いては、津波規模階級m(表 2.2-1 参照)で整 理した (図 2.2-2). 図から, 現行の津波警報レ ベル(表 2.2-1 では津波の高さ H が 1 m~3 m) に相当するとみられる津波規模階級 m=1 より も大きな規模の津波は、概ねマグニチュード M7 程度よりも大きな地震によって発生してい る傾向がみられる. 同様の傾向は, 宇佐美 (1998)に記載のある 1900年以降 1983年までの 被害を伴った津波を発生させた地震の規模と 津波規模階級の関係(図 2.2-3)においても認め られる.

図 2.2-2 気象庁(2011)による地震月報 (1923 年から 1996 年)による海域で発生 した地震の規模と、それにより発生した津 波の津波規模階級(渡辺(1998)「日本被害 津波総覧(第2版)」による)

表 2.2-1 今村・飯田の津波規模階級. (出典:渡辺(1998)「日本被害津波総覧(第2版)」)

規模階級(加)	津波の高さ(H)	被害程度
-1 0 1 2 3 4	50 cm 以下 1m 程度 2 * * 4~6 * * 10~20 * *	なし 非常にわずかの被害 海岸および船の被害 若干の内陸までの被害や人的損失 400km以上の海岸線に顕著な被害 500km以上の海岸線に顕著な被害

表 2.2-2 に、阿部によるカタログ「日本付近 に発生した津波の規模(1498年-2006年)」に 記載されている津波を発生させた地震に対し, 渡邊(1998)を参照して対応する津波規模階級 m と震源の深さのデータをまとめた.図 2.2-4 は, この表に基づく地震規模ごとの津波規模の発 生回数を示す.これによるとやはりマグニチュ ード M」が7以上の場合,津波規模階級 m が1 を超えることが多い. ただし, 図中で, Mj6.8 で津波規模階級が4となっている地震が1例 あるが、これは、「津波地震」とされている 1896 年明治三陸沖地震である.図 2.2-5 は,表 2.2-2をもとに 1926 年~1996 年までの期間につい ての津波規模 m ごとの発生回数を見たもので ある.図 2.2-6 は,発生回数を期間 70 年で除し たときの年頻度で見たものである.これらによ

図 2.2-3 1900 年から 1983 年までに発生し た被害地震の規模(宇佐美, 1998)とそれに伴 って発生した津波の規模階級

れば,津波規模階級mが1以上となる津波は, 年頻度にして0.3程度,すなわち3年に1度程 度の頻度で発生していることになる.

津波を発生させる地震の震源の深さは,表 2.2-2 によれば1例を除き,ほぼ 60 kmより浅い.また,岡田・谷岡(1998)の整理によって も,概ね 80 kmより浅い地震により津波が発生 していることが示されている.しかも,彼らに よれば,発生した地震によって津波が発生する 割合もおよそ震源の深さが 50 km 以浅の場合 に 30%を超え,特に規模の大きな津波は震源 の深さ 40 km 以浅の地震の場合に集中して発 生していると述べられている.

2.2.3 津波痕跡に関する資料

2011 年東北地方太平洋沖地震による津波災 害の発生以降,過去の津波の来襲の規模とそ の頻度についての関心が強まっている.過去 に発生した津波の痕跡を地質資料から探ろう という試みには 1960 年以降の長い積み重ねが ある.たとえば,(国)産業技術総合研究所の 活断層・地震研究センターでは,過去の巨大 津波を解明するために,津波堆積物の調査・ 研究が過去 10 年以上にわたって続けられてお り,「津波堆積物を用いた過去の巨大津波の研 究」(https://unit.aist.go.jp/actfaulteq/Tohoku/tsunami taiseki.html)においてその成 果がまとめられている.後藤ら(2012)は, 津波堆積物に関する研究史をまとめており, 2011年12月時点までに公表された174編の 論文並びに報告書の一覧表を作成している.

図 2.2-4 「日本付近に発生した津波の規 模(1498 年-2006 年)」に記載のある地震 の Mj と津波規模階級 m

図 2.2-5 津波規模階級 m ごとの津波発 生回数(集計期間 1926~1996 年)

図 2.2-6 津波規模階級mに対する津 波発生頻度(1926~1996年)

図 2.2-7 津波を発生させた地震の発生 深度別頻度(岡田・谷岡, 1998による)

表 2.2-3 文献自体の信頼度(古文書・ 史料集の信頼度).(出典:津波痕跡デー タベース「用語集(暫定版)」)

文献自体の信頼度	判断基準
٩	A1:直接目撃者が彼美値後に混したもの。 A2:その地点の公的な立場の人(冬主、代古、支配領主など)が記録し たもの。律被装者にはる免税支持など。 A3: 予防での過去報(兄者リストなど) B3: 予防などでの最古報(兄者リストなど) B3: 予防などでお扱い後日などと明確に言い伝えられている記述を集 めたもの。
o	D1:A1からA3に基づき、打戸から明治期の会的更料構築者がまとめた 文書、インテリの陸軍など。 B2:個人の年代記など、直接体験者の伝記であるが、体験から文章化 光でに年代が経っている記述を集めたもの。 C1:明治から昭和・平成までに編集された市町村実編集者が地元伝承 を集めたもの。
Δ	C2:被災時に該行者が展開を文章化したもの。 C3:被災時に適方の地方の人がニュースとして記録したもの。 D:Cより劣をもの。堅和・平成の法代人が協測によりまとめたもの。
×	E:(偽書である(東日派三郡誌など)

※2009/3/6 第7回検討会賃料より抜粋

表 2.2-2 日本付近に発生した津波の規模(1498 年—2006 年)の地震リスト

YEAR	MO	DY	HR	MN	LAT	LONG	REGION	Mt	Mw	Ms	Mj	Mt-Ms	m	深さ(km)
1498	9	20					東海	8.5				FALSE	3	
1596	9	1				1	別府湾	8.0				FALSE		
1605	2	3		-	-	1	東海・南海	8.2	-		-	FALSE	3	
1611	12	21		-			二陸冲	8.4	-		-	FALSE	4	
1677	10	13	-	-	-	-	上路油	77				FALSE	2	
1677	11	4					房総沖	8.0				FALSE	3	
1703	12	31				-	関東	8.4				FALSE	3	
1707	10	28					東海·南海	8.4				FALSE	4	
1741	8	29	67 C			X: 1	波島半島沖	8.4	8 8			FALSE		ĝ.
1763	1	29					十勝沖	7.9				FALSE	2	
1769	8	29					日向灘	7.2			-	FALSE	1	
17/1	4	24	-	-			<u>八重山群島</u>	8.5	-	-	-	FALSE	4	
1792		17	-			-	の位置法	7.5				FALSE	2	
1804	1	10	-				山影・秋田愚沖	7.0	-			FALSE	1	
1833	12	7					山形県沖	81				FALSE	2	
1843	4	25					十勝沖	8.0				FALSE	2	
1854	12	23					東海	8.3				FALSE	3	
1854	12	24					南海	8.3				FALSE	3	
1856	8	23			10.00	112.00	十勝沖	7.6				FALSE	2	
1894	3	22	19	23	42.50	146.00	根室沖	8.2	-	8.1	7.9	0.1	2	
1890		15	10	- 00	30.50	141.00	次務飛冲	7.3		1.2	0.0	0.1	2	
1897	1 2	20	5	50	38.10	141.90	定城県沖	0.0	· · · ·	7.3	7.4	FALSE	0	
1897	8	5	9	10	38.30	143.30	宮城県沖	7.8		7.7	7.7	0.1	1~2	
1898	4	23	8	37	38.60	142.00	宮城県沖	6.7		7.4	7.2	-0.7	-1	
1899	11	25	3	43	31.90	132.00	宮崎県沖	7.0		7.2	7.1	-0.2	-1	
1901	Ű	24	16	2	28.00	130.00	奄美大島沖	7.6		7.3	7.5	0.3	0	
1901	8	9	18	23	40.50	142.50	實森県東方沖	7.3	-	7.3	7.2	0.0	0	
1901	8	10	3	33	40.60	142.30	百林県東万冲	7.2		7.5	7.4	-0.3	0	100
1014	0	10	10	20	28.00	130.00	<u>电天八岛刊虹</u> 座坦息目由朝			87	8.0	FALSE	1	100
1915	11	1	16	24	38.30	142.90	宮城県沖			76	7.5	FALSE	0	
1918	9	8	2	16	45.50	152.00	ウルップ島沖	8.5	10 ×	8.2	8.0	0.3	-	
1918	Ê 11	8	13	38	44.50	150.50	ウルップ島沖			7.7	7.7	FALSE		
1923	6	2	2	24	35.90	142.00	茨城県沖	7.4		7.2	7.3	0.2	-1	
1923	9	1	11	58	35.10	139.50	相模湾	8.0	7.9	8.2	7.9	-0.2	2	
1923	9	2	11	46	34.90	140.20	房総半島沖	7.5	7.0	7.7	7,3	-0.2	-1	
1927	3	1	18	2/	35.50	135.20	京都府北部		7.2	7.6	7.3	FALSE	-1	0
1927	0	10	0	12	37.90	142.10	当秋 飛汗 開始半食油	0.0	h	7,1	0.7	-0.3	-1	10
1928	5	27	18	50	40.00	143.30	岩手 國 沖	71		7.1	7.0	0.0	-1	40
1931	3	9	12	48	41.20	142.50	青森県東方沖	7.2		7.8	7.6	-0.6	-1	0
1931	11	2	19	3	32.30	132.60	宮崎県沖	7.3		7.6	7.1	-0.3	-1	40
1933	3	3	2	30	39.20	144.50	岩手県沖	8.3	8.4	8.5	8.1	-0.2	3	10
1933	6	19	6	37	38.10	142.50	宮城県沖	7.1		7.3	7.1	-0.2	-1	0
1935	7	19	9	50	36.60	141.40	茨城県沖	6.6		6.5	6.9	0.1	-1	0
1935	10	13	1	45	40.00	143,70	岩手県泙	1.2	-	7.2	6,9	0.0	-1	0
1935	10	18	9	45	40.80	144.40	百秣飛泉力冲 宮城県油	2.0		7.2	7.1	-0.3	-1	10
1930		23	16	40	36.20	141.60	西 <u>秋</u> 帝/平 芬城温油	7.0	77	7.6	7.0	-0.2	0	40
1938	6	10	18	53	25.30	125.20	宮古島北方沖	7.00	1.1	7.7	6.7	FALSE	1	40
1938	11	5	17	43	37.30	142.20	福島県沖	7.6	7.8	7.7	7.5	-0.1	0	30
1938	11	5	19	50	37.30	141.70	福島県沖	7.6	7.7	7.7	7.3	-0.1	0	30
1938	11	6	17	53	37.40	141.90	福島県沖	7.3	7.6	7.6	7.4	-0.3	0	0
1938	11	7	6	38	37.00	141.60	福島県沖	7.4	7,6	7.0	6,9	0.4	0	20
1938	11	14	7	31	37.00	141.50	福島県泙	7.1		7.0	6.0	0.1	-1	60
1938	11	20	10	14	30.70	142.10	次現荒 津 道島県油	8./		0.0	6.9	0.1	-1	20
1930	1	20	12	29	32.30	132.00	宮崎県沖	6.7	-	8.5	6.5	0.1	-1	20
1939	5	1	14	58	40.10	139.50	秋田県沖	6.9		7.0	6.8	-0.1	-1	0
1940	8	2	0	8	44.30	139.50	積丹半島沖	7.7	7,5	7.5	7.5	0.2	2	10
1941	11	19	1	46	32.00	132.10	宮崎県沖	7.6		7.8	7.2	-0.2	1	0
1943	6	13	14	11	41.30	143.40	青森県東方沖	7.3		7.2	7.1	0.1	-1	20
1944	12	7	13	35	33.80	136.60	三重県沖	8.1	8.1	8.0	7.9	0.1	3	30
1945	1	13	3	38	34.70	137.10	定 知県南部 奏表県または		6,6	6.8	6.8	FALSE	0	0
1945	2	10	13	57	41.00	142.10	百秋荣果万冲	7.1	0.1	7.1	7,1	0.0	-1	20
1940	11	21	4	19	43.80	141.00	留描述	7.2	.0.1	71	6.0	0.1	3	20
1948	4	18	1	11	33.30	135.60	紀伊半島沖	1.0		7.3	7.0	FALSE	0	0
1952	3	4	10	22	41.80	144.10	十勝沖	8.2	8,1	8.3	8.2	-0.1	2	0
1952	3	10	2	3	41.70	143.70	日高南東沖	7.3		7.1	6.8	0.2	-1	20
1953	11	26	2	48	34.00	141.70	房総半島沖	7.8	7.9	7.9	7.4	-0.1	1	60
1956	3	6	8	29	44.30	144.10	網走沖	6.2	-	6.0	6.3	0.2	-1	10
1958	11	7	1	58	44.30	148.50	エトロノ島沖	8.2	8.3	8.1	8.1	0.1	2	80
1959	10	22	14	10	37.50	142.20	加度用油	6.0		7.1 8.F	8.8	-0.2	-1	40
1960	10	20	10	30	39.80	143.40	治手県沖	75		77	7.2	-0.2	-1	0
1960	3	23	9	23	39.40	143.70	岩手県沖	7.1		6.8	6.7	0.3	-1	0
1960	7	30	2	31	40.30	142.50	岩手県沖	7.0		6.7	6.7	0.3	-1	50
1961	1	16	16	20	36.00	142.30	茨城県沖	7.2		6.9	6.8	0.3	-1	40
1961	1	16	21	12	36.20	142.00	茨城県沖	7.1		6.5	6.5	0.6	-1	20
1961	2	13	6	53	43.20	147.90	エトロフ島沖	6.9		6.9	6.6	0.0	-1	80
1961	2	10	3	10	31.60	131.90	西南飛汗 國力島南市油	1.5		7.6	1.0	-0.1	0	40
1961	0	10	23	51	42 90	145.60	建立 政府 果冲	6.9	7.0	71	7.2	-0.2	-1	80
1961	11	15	16	17	42.70	145.60	根室沖	6.9	1.0	6.8	6.9	0.1	-1	60
1962	4	12	9	52	38.00	142.80	宮城県沖	6.8		7.1	6.8	-0.3	0	40
1962	4	23	14	58	42.20	143.90	十勝沖	6.7		6.9	7.0	-0.2	-1	60
1963	10	12	20	26	43.90	148.90	エトロフ島沖	6.9	-	7.0	6.3	-0.1	-1	0
1963	10	13	14	17	43.80	150.00	エトロフ島沖	8.4	8.5	8,1	8.1	0.3	2	0

日本海溝に発生する地震による確率論的津波ハザード評価の手法の検討-藤原ほか

YEAR	мо	DY	HR	MN	LAT	LONG	REGION	Mt	Mw	Ms	Mj	Mt-Ms	m	深さ(km)
1963	10	20	9	53	44.10	150.10	ウルップ島沖	7.9		7.2	6.7	0.7	2	26
1964	5	16	16	80	40.30	139.00	秋田県戸 新潟還油	7.1	7.0	6.6	5.9	0.5	-1	40
1964	7	24	17	14	45,80	153.40	千島列島	7.2	1.0	6.8	6.4	0.4	4	40
1964	12	11	0	11	40.40	138.90	秋田県沖	6.5		6.5	6.3	0.0	-1	40
1965	6	11	12	33	43.70	148.80	エトロフ島沖	7.0	7.2	7.0	6.4	0.0	-1	0
1968	4	23	9	42	32.30	132.50	宮崎県沖	7.7	7.4	7.6	7.5	0.0	1	30
1968	5	16	9	48	40.70	143.60	青森県東方沖	8.2	8.2	8.1	7.9	0.1	2	0
1968	5	16	19	39	41.40	142.90	青森県東方沖	7.7		7.7	7.5	0.0	0	40
1968	6	12	22	41	39.40	143.10	岩牛県沖	7.4	7.1	7.3	7.2	0.1	0	0
1969	8	12	6	27	43.30	147.80	色丹島沖	8.2	8.2	7.8	7.8	0.4	1	30
1970	7	26	7	41	32.10	132.00	宮崎県沖	7.1	7.0	6.8	6.7	0.3	-1	10
1971	8	2	16	24	41.20	143.70	日高南東沖	7.1	10	7.1	7.0	0.0	-1	60
1971	2	29	18	22	40.70	141.40	サバリン四方沖	1.5	1.5	7.4	7.1	0.0	-1	70
1972	12	4	19	16	33.20	141.10	八丈島東方沖	7.6		7.5	7.2	0.1	-1	50
1973	6	17	12	55	43.00	146.00	根室沖	8.1	7.8	7.7	7.4	0.4	1	40
1973	6	24		43	43.00	146.60	根室沖	6.9	1.5	6.5	65	0.3	0	30
1974	5	9	8	33	34.60	138.80	伊豆半島沖	6.5	6.5	6.3	6.9	0.2	-1	10
1974	9	27	14	47	42.80	146.70	根室沖	7.0		6.5	6.6	0.5	-1	30
1975	6	10	22	47	42.80	148.20	色丹島沖	7,9		6.8	7.0	1.1		0
1978	1	14	12	24	34.80	139.30	伊豆大島付近	6.7	6.6	6.4	7.0	0.3	-1	0
1978	3	23	9	31	44,40	149.70	エトロフ島沖	7.1	7.3	7.1	6.7	0.0	-1	40
1978	3	23	12	15	44.80	149,40	エトロフ島沖	7.5	7.4	7.4	7.0	0.1	-1	60
1978	3	25	4	4/	44.30	149.80	エトロノ島沖	7.7	7.6	7.5	7.3	0.2	-1	40
1970	2	20	15	32	40.20	143.90	<u>高频原件</u> 岩手碟沖	6.9	6.5	6.7	6.5	0.2	-1	40
1980	2	23	14	51	43.50	146.60	色丹島沖	6.8	7.1	6.8	6.8	0.0	-1	30
1980	6	29	16	20	34.90	139.20	伊豆半島東方沖	6.3	6.4	6.0	6.7	0.3	-1	10
1981	3	19	11	32	42.10	143.00	<u>呂 </u>	7.0	7.0	6.9	7.0	0.1	-1	40
1982	7	23	23	23	36.20	142.00	茨城県沖	7.0	7.0	6.8	7.0	0.2	-1	30
1982	12	28	15	37	33.90	139.50	三宅島南方沖		6.2	6.1	6.4	FALSE	-1	20
1983	5	26	11	59	40.40	139.10	秋田県沖	8.1	7.9	7.7	7.7	0.4	3	14
1984	3	24	18	43	44.40	148.90	「林泉四ノノー	7.1	7.1	7.0	6.8	0.1	-1	40
1984	6	13	11	29	31.40	139.80	鳥島近海	7.3	5.6	5.5	5.9	1.8	0	0
1984	8	3 7	4	6	32.40	132.20	宮崎県沖	6.9	6.9	6.7	7.1	0.2	-1	33
1984	11	15	6	20	24.00	121.80	<u> </u>	7.5	7.3	7.8	7.5	-0.2		33
1987	2	6	22	16	37.00	141.90	福島県東方沖	6.8	6.8	6.3	6.7	0.5	ar sie	
1987	3	18	12	36	32.00	132.10	日向灘	6.8	6,6	6.8	6.6	0.0		
1989	11	29	14	25	39.60	143.80	二階はるが沖 岩毛県油	5.8	6.9	7.4	7.1	0.2	-1	0
1990	2	20	15	53	34.70	139.30	伊豆大島近海	6.5	6.2	6.4	6.5	0.1	-1	6
1990	9	24	6	13	33.10	138.60	東海道はるか沖	6.8	6,5	6.5	6.6	0.3	-1	60
1991	12	22	17	43	45.80	152,40	十島列島	7,5	7.5	7.4	6.8	0.1	0	10
1992	8	12	0	14	32.60	142.10	八丈島東方沖	7.1	6.4	6.3	6.1	0.8	-1	50
1993	2	1 1	22	27	37.70	137.30	能登半島沖	6.7	6.6	6.2	6.6	0.5	0	25
1993		12	22	17	42.80	139.20	北海道南西沖	8.1	7.7	7.6	7.8	0.5	3	35
1993	8	8	10	42	42.00	139.90	「北海道用四泮	2.0	0.0	6.3	0.3	0.3	-1	24
1994	5	24	1 13	0	24.00	122.40	台湾付近	6.5	6.5	6.7	6.6	-0.2	-1	37
1994	6	5	10	9	24.30	121.70	台湾付近	6.6	6.3	6.6	6.7	0.0	~ ~	
1994	10	4	22	22	43.40	147.70	北海道東方沖	8.2	8.1	8.1	8.2	0.1	2	23
1994	12	28	21	19	40.50	143.70	毛海道東方洋	7.7	7.7	7.5	7.6	0.2	0	0
1995	1	17	5	46	34.60	135.00	兵庫県南部	6.4	6.8	6.8	7.3	-0.4	-1	16
1995	10	18	19	37	28.00	130.40	奄美大島近海	7,6	6.9	6.9	6.7	0.7	1	38
1995	12	19		41	28.10	130,30	<u>电美大局近海</u> 千島刻島	7.3	6./	6.9	0.0	-0.3	-1	34
1996	9	5	3	15	31.40	140.00	鳥島近海	7.5	5.7	5.1	6.2	2.4	-1	13
1996	10	18	19	50	30.60	131.20	種子島近海	6.7	6.6	6.6	6.2	0.1	-1	40
1996	10	19	23	44	31.80	132.00	日向灘	6.9	6.6	6.6	6.9	0.3	-1	39
1998	5	14	8	30	22.30	125.30	石垣島南方沖	6.8	7.4	7.3	7.6	-0.5	and the state	45
2000	3	28	20	0	22.50	143.70	父島近海	7.6	7.6		7.6	FALSE		
2000	- 7	1	18	00	34.20	139.20	新島神津島近海	6.2	6.2	6.1	6.4	0,1		
2000	12	18	13	20	23.90	122.80	与那国島近海	6.8	6.8	6.7	7.3	0.1		
2002	3	26	12	45	23.10	124.20	石垣島南方沖	6.7	6.5	6.3	6.6	0.4		
2002	3	31	15	52	24.20	122.00	台湾付近	7.2	7.1	7.1	7.2	0,1		
2003	10	31	10	6	37.80	142.70	福島県沖	7.0	6.8	6,6	6.8	0.4		
2004	5	30	5	56	34.10	141.90	房総半島南東沖	7.0	6.5	6.6	6.7	0.4		
2004	9	-5	19	1	33.00	136.80	紀伊半島沖 東海道油	7.2	7.0	7.0	6.9	0.2		
2004	11	29	23	32	42.90	145.30	釧路沖	6.8	7.0	7.0	7.1	-0.2		
2005	1	19	15	11	34.00	142.00	房総半島南東沖	7.5	6.4	6.3	6.8	1.2		
2005	8	16	11	46	38.20	142.30	宮城県沖	7.0	7.1	7.2	7.2	-0.2		
2006	1	10	16	11	31.40	140,40	鳥島近海	7.5	5.5	5.2	5.9	23		
2006	10	24	6	17	29.20	140.40	鳥島近海	7.4	6.4	5.2	6.8	2.2		
2006	11	15	20	16	46.70	154.00	千島列島	8.2	7.9	7.8	7.9	0.4		

表 2.2-2(つづき)

注:Mt:津波マグニチュード,Mw:モーメントマグニチュード,Ms:表面波マグニチュード,Mj:気象庁マグ チュード(いづれも阿部による表による).m:津波規模階級(渡辺,1998による). 震源の深さは,渡邊(1998)の 載によった.津波地震(Mt-Ms≧0.5となる地震)は黄色で,津波規模階級 mの記載がない地震は灰色で示した. 波地震の同定は,阿部(1988)によった. 地質資料に基づく津波痕跡データと,歴史文 献資料に基づく津波データを総合し,地理デー タベースとして整理しているのが,東北大学お よび原子力安全基盤機構により整備されてい る「津波痕跡データベース」(http://tsunamidb.irides.tohoku.ac.jp/tsunami/kiyaku.php, 2014 年7月30日参照)である.このデータベース は2007年から継続的に構築されているもので, 特徴としては約3万点に上る痕跡情報のすべ てについて,津波専門家による精査に基づき各 種学術論文や古文書・史料に対する信頼度を評 価(例えば表 2.2-3)し,あるいは痕跡データ の信頼度(例えば表 2.2-4)が付与されている 点にある.

既に表 2.2-5 に示す津波についてデータベー ス化されており,蓄積されているデータの地理 的分布を,1741年の寛保(渡島大島)噴火津波 よる痕跡分布図を例として図 2.2-8 に示す.今 後のさらなるデータの蓄積が望まれる. 表 2.2-4 津波痕跡高の信頼度の分類(1960年 チリ地震津波以降).(出典:津波痕跡データベ ース「用語集(暫定版)」)

		χ	判断基準
	A	信頼度大なるもの	痕跡明瞭にして、測量調差最も小なるもの
-	B	信頼度中なるもの	痕跡不明につき、聞き込みにより周囲の状況から信頼あ る水位を知るもの。測量調差小
后額度	c	信頼度小なるもの	その他砂浜などで異常に波がはい上がったと思われる もの。あるいは調点が海辺より離れ測量調差が大なるも の
	D	信頼度極小なるもの	高潮、台風などの影響で痕跡が重複し、不明瞭なもの、 など

図 2.2-8 津波痕跡データベースのデ ータの例(1741年寛保(渡島大島)噴 火津波)

****	\h\\ r			10,110,000,000			痕	跡信頼度の内			
津波 番号	津波名	又献数	狠跡件数	検潮記録	А	В	С	D	х	Z	精查中
0002	869貞観地震津波	23	14	0	0	0	0	1	0	13	0
0003	887仁和(紀伊半島沖)地震津波 1096嘉保甫海地震津波	7	0	0	0	0	0	0	0	0	0
0006	1361正平南海地震津波	8	6	0	Ő	0	4	0	0	2	0
0008	1498明応南海地震津波 1499明応東海地震津波	8	0	0	0	0	0	0	0	170	0
0009	1596慶長豊後地震津波	13	119	0	5	3	12	3	21	71	0
0012	1605慶長東海地震津波	25	180	0	1	4	22	37	15	93	8
0013 T015-01	<u>1611慶長ニ陸地震津波</u> 1640 駒ケ岳噴火津波	23	105	0	2	2	23	15	0	62	0
0016	1662日向灘地震津波	3	18	0	0	0	7	1	1	9	0
0018	1677延宝三陸地震津波 1677延宝豆総地震津波	9	23	0	0	0	3	17	2	1	0
W003	1700元禄(北米カスケード)津波	8	9	0	0	1	33	40	0	40	0
0020	1703元禄地震津波 1707完全地震津波	48	331	0	2	15	17	83	3	209	2
0021	1707 <u>玉水地震洋波</u> 1741寛保(渡島大島)噴火津波	16	247	0	70	9	42	38	5	146	2
0026	1762宝暦佐渡地震津波	7	0	0	0	0	0	0	0	0	0
0027	1763玉層育槑県東方沖地農津波 1768明和沖縄本島南西沖地震津波	8	2	0	0	0	1	0	0	2	0
0030	1769日向灘地震津波	3	6	0	0	0	0	1	2	2	1
0031 W006	1771八重山地震津波 1780千島列島津波	21	214	0	77	8	65 0	8	0	56	0
0032	1780鹿児島湾北部海底噴火津波(3	0	0	0	0	0	0	0	0	0
0033	<u>1780鹿児島湾北部海底噴火津波(</u> 1781 <u>年</u> 月島湾海底噴火津波)	0	0	0	0	0	0	0	0	0	0
0036	1792雲仙普賢岳山体崩壞津波	10	183	0	89	26	1	0	0	67	0
0037	1792寛政北海道西方沖地震津波	3	1	0	0	0	0	0	0	1	0
0038	1793寬政三陸地震津波	8 9	<u></u>	0	0	3	4 10	40	4	<u>78</u>	0
0040	1804象潟地震津波	7	78	0	0	0	4	0	1	73	0
0041 W007	1833大保(山形県冲)地震津波 1837天保チリ南部沖地震津波	21	89	0	0	5	22	29	1	31	0
0043	1843天保根室沖地震津波	21	21	0	3	4	6	5	1	2	0
0044	1854安政東海地震津波 1854安政南海地震津波	56 52	1885 541	0	35	70	135	200	25	1420	0
0048	1856安政三陸(八戸沖)地震津波	16	149	0	4	10	42	69	2	200	0
W008	1868チリ(アリカ)地震津波 1977チリ(イキケ)地震津波	5	4	0	0	0	0	0	0	4	0
0053	1894根室半島南東沖地震津波	10	85	5	0	0	6	15	0	64	0
0055	1896明治三陸地震津波 1807三時はそか波地震津波	19	1007	1	291	3	364	0	0	160	189
0057	<u>1897三陸はるが沖地震津波</u> 1899宮崎県沖地震津波	2	2	2	1	0	40	0	0	13	0
0063	1911喜界島地震津波	6	3	0	0	1	1	0	1	0	0
W014 W016	1918十島列島ワルッフ島東万泙地) 1922チリ(アタカマ)地震津波	<u>6</u>	27	24	6	2	3	1	0	15	0
0067	1923大正関東大地震津波	19	319	13	6	20	140	12	1	140	0
T001	1929日向灘地震津波 1921日向灘地震津波	2	0	0	0	0	0	0	0	0	0
0074	1933昭和三陸地震津波	17	2376	23	897	229	789	3	0	458	0
0083	1938宮古島付近地震津波 1939日の潮地震津波	2	0	0	0	0	0	0	0	0	0
0091	1939日问 <u>潍屯長洋波</u> 1940積丹半島沖地震津波(神威岬)	10	4	14	3	2	24	27	0	60	0
0094	1941日向灘地震津波	7	5	2	0	0	0	0	0	5	0
0096 W020	1944昭和東南海地震津波 1946アリューシャン津波	26	/96	/6	136	13	81	13	0	553	0
0099	1946昭和南海地震津波	30	1693	35	322	264	289	10	0	721	87
0102 W021	<u>1952十勝沖地震津波</u> 1952カムチャッカ津波	10	382	19	38	40	160	41	0	103	0
0109	1953房総半島南東沖地震津波	6	59	42	9	5	2	3	0	38	2
W022	<u>1957アリューシャン地震津波</u> 1958エトロフ島油地震津波	8	24	24	10	11	0	0	0	3	0
W023	1960チリ地震津波	44	1980	229	358	512	371	37	0	697	5
0121	1961日向灘地震津波 1062-1-1-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2	6	12	12	3	0	1	0	0	8	0
W025	1963エトロノ島沖地長洋波 1964アラスカ地震津波	6	61	59	28	0	0	0	0	33	0
0131	1964新潟地震津波	14	998	162	147	159	219	24	0	401	48
0136	1968日回灘地震津波 1968十勝沖地震津波	6 11	105	70 271	27	130	15 852	0 45	0 0	58 784	0
0140	1969日向灘地震津波	2	9	9	0	0	4	0	0	5	0
0142	19/0日回灘地震津波 1973根室半島沖地震津波	3	39 193	39	85	18	17	0	0	19	0
0152	1975北海道東方沖(色丹島沖)地震	6	84	74	46	18	0	0	0	20	0
0158	1978宮城県沖地震津波 1983日本海中部地震津波	2	28	28	001	1204	0	0	0	28	0
0171	1984日向灘地震津波	29	3748	12	801	0	000	0	0	8	0
0173	1986台湾東方沖地震津波	1	0	0	0	0	0	0	0	0	0
0181	1993	2	13 2115	13 235	7 404	0 464	0 456	0 62	0	6 716	0 13
0186	1994北海道東方沖地震津波	6	353	98	87	116	49	8	0	89	4
0189	1995奄美大島近海津波 1995奄美大島近海津波(余震)	5	120 64	102	83	7	1	0	0	29	0
W047	1996イリアンジャヤ地震津波	8	135	135	85	16	1	0	0	33	0
0194	1996日向灘地震津波 1996日向灘地震津波	2	3	3	0	0	0	0	0	3	0
W051	2001ペルー南部地震津波	4	6 <u>3</u>	6 <u>3</u>	/ 31	0	0	0	0	<u>3</u> 2	0
0201	2001与那国島近海津波	1	6	6	6	0	0	0	0	0	0
0202	2002 白坦岛南方冲津波 2002 台湾東方沖津波	1	4	4	4	0	0	0	0	0	0
0204	2003十勝沖地震津波	11	263	0	177	53	31	0	0	2	0
0207	2004紀伊半島沖地震津波 2004東海道沖地震津波	5	11	11	11	0	0	0	0	0	0
0215	2006千島列島東方沖地震津波	6	114	111	61	2	2	0	0	49	0
0216	2007千島列島東方沖地震津波	6	97	94	52	2	2	0	0	41	0
0217	2007新潟県中越沖地震津波	4	3	3	3	0	0	0	0	0	0
225	2009 駿河湾地震津波	1	0	0	0	0	0	0	0	0	0
W057 214	2010ナリ地震津波 2011東北地方太平洋沖地震津波	3	336 5907	1	199 4721	92	61 115	0 17	0	48	0
	合計	1048	32156	2885	9850	4770	5506	1185	156	10277	511

表 2.2-5 津波痕跡データ登録数集計 (津波別). (出典:津波痕跡データベース)

2.3 津波の発生および伝播に関する手法

2.3.1 地形モデルの作成方法, 使用されている データ, データの精度について

ー般的な津波シミュレーションに用いる入 カデータは、地形データ(海域及び陸域)、粗度 データ、構造物データの3つで構成される.計 算対象となる空間を格子状に分割し、これらの 3つの情報をその格子上に近似して表現したも のが津波シミュレーションに用いる計算入力 データとなる.

海底地形及び陸域の地表面を再現するため の地形データとして, 地盤高 (標高及び水深) を格子化したメッシュデータを用いる. 地形デ ータの精度は最終的な計算結果に影響を与え, 場合によっては外力条件より重要となる(高橋, 2004). 格子間隔を小さくすると計算精度も向 上するが,計算負荷,データ作成に必要な資源 も増大し、津波シミュレーションの大部分がこ の地形モデルの作成作業となることも多い.ま た,小さな空間格子間隔のデータから大きな空 間格子間隔のデータを作成することは可能で あるが, 逆は不可能である. 従って, 津波シミ ュレーションに用いる地形データは、

目的・用 途に応じた空間格子間隔を決定し、その格子間 隔に応じた地形の基礎データを収集する必要 がある.

以下,津波シミュレーションに用いる地形モ デルの作成方法,使用データおよびデータ精度 等に関する既往の研究・文献等を整理する.

(1) 空間格子間隔

津波シミュレーションの地形データは,陸域 データと海域データで構成される.

海域の水深データは、外洋と沿岸部に分けて 考えることができる.外洋では津波の発生を計 算するため、プレート境界を含んでおり、かつ 断層面が余裕をもって設定できるように広域 の地形条件、かつ適切な空間格子間隔の設定が 要求される.水深が大きい外洋での津波の波長 は数10km~数100kmのオーダーであり、津波 の伝播速度も大きくなることから、比較的粗い 格子間隔で十分である.それに対して、水深が 浅く、津波の伝播速度が遅いため波長が短くな る沿岸部では、局所的な地形が再現されている 格子間隔の小さい地形モデルが要求される.こ の津波現象の解析に要求される空間スケール の違いのため、津波の空間波形および地形条件 に応じて、異なる計算格子間隔の領域を接続し て同時に計算する方法(ネスティング)が用い られることが多い.

領域接続の計算では、空間格子間隔の選定に 注意が必要であり、あまり格子間隔に違いのあ る領域を接続させると、数値計算上、計算誤差 が蓄積する場合がある.これは、各領域で再現 できる限界波長が格子間隔の2倍となるため、 小領域で発生した津波の短波長成分の一部が 大領域へ接続できずに小領域内部に残ってし まうためである.この影響を低減するため、格 子間隔の選定方法としては、格子間隔を1:3 あ るいは1:2の割合で小さくして領域を結合す る方法が一般的に用いられている(図2.3-1).

なお,各計算領域を接続する際に,接続境界 が陸地と鋭角に交わる場合は,陸からの反射波 がすぐ接続境界に達し,地形条件が粗いままで 得られた外側の大領域での計算結果との差が 大きくなるため計算が不安定化する可能性も ある.

図 2.3-1 空間格子間隔の異なる領域の接続

(2) 海域地形

長谷川ら(1987)は、一様水深の一次元水路に おける波の伝播計算では一波長に含まれる格 子点数を少なくとも 20 とする必要があること から、実地形を対象とした平面問題では主要な 計算領域全体に渡り津波の波長の 1/20 以下を 格子間隔として設定することが望ましいとし、 格子分割が津波の計算水位に与える影響はき

図 2.3-2 格子間隔と最大水位の差 (長谷川ら, 1987)

わめて大きいことを示した(図 2.3-2). また,1 次元水路に単位振幅の正弦波を入射波とした 線形長波計算を行い,空間格子間隔⊿x に対す る波長Lの比であるL/⊿x(⊿xの空間分解能) と,計算時間間隔⊿tのCFL条件に対する充足 度を検討した結果,空間分解能の影響の方がは るかに大きいことを述べ,数値散逸を回避する ためには波長に対する空間分解能 L/⊿x を 20 以上にする必要があることを示した.この検討 は津波の伝播距離を波長の 10 倍程度までで評 価しており,より長い伝播を考える場合,さら に細かい空間分解能が必要である.今村(1989) はこの条件について,初期水位条件から求めら れる波長での分解能として設定する必要性を 指摘している.

これらの検討をまとめると,以下のように定 式化できる.

$$\Delta t \le \Delta x / \sqrt{2gh_{\text{max}}} \tag{2.3-1}$$

長谷川(1987), 今村(1989)による⊿xの条件:

$$L/\Delta x = (T_0 \sqrt{gh})/\Delta x \ge 20 \tag{2.3-2}$$

ここで,gは重力加速度, *h*_{max}は最大静水深, *T*₀ は初期水位での津波周期, *h*は静水深である.

佐山ら(1986)は、屈折の影響の大きい近海 計算域において格子間隔を800m,400m,100 mと変化させた検討を実施し、格子幅が小さい

図 2.3-3 最大水位分布及び遡上域の比較 (佐山 ら, 1986)

ほど水位が高く細かな変動になることを示している(図 2.3-3).

今村(1989)は深海域ならびに浅海域において, 2 次元津波伝播計算を行い,計算格子間隔の違いによる計算結果の差について検討している. 結果として,深海域においては 5.4 km(2.7 km, 10.8 km との比較),沿岸域(海岸線まで)では 0.2 km(0.3 km, 0.6 km との比較)での計算が 望ましいとしている(図 2.3-4,図 2.3-5).同様 に,長谷川ら(1987)は,秋田県北部域沿岸について 1983年日本海中部地震津波の陸域遡上計算 について,空間解像度 60 m と 30 m での比較計

図 2.3-4 浅海域での海岸線近似と計算結果 の比較(今村, 1989)

算を実施しており、その結果、平坦で単調な地 域ではこれらの差は少ないものの、地形的に複 雑な地域では差異が大きくなることを指摘し ている.

Goto and Shuto (1983)は,沿岸の遡上計算の空間格子間隔について,以下の指標を示している.

$$\Delta x / \alpha g T^2 \le 4 \times 10^{-4} \tag{4.1.2.-3}$$

ここで,*T*は津波周期, αは地形勾配である. この条件の場合,周期 20 分の津波で海底勾配

図 2.3-5 深海域での格子間隔の違いによる時 間波形の比較(明治三陸大津波, 今村,1989 に よる)

が 1/200 の場合, 計算格子間隔を 25 m とするこ とによりこの条件を満足できることになる.

土木学会原子力土木委員会津波評価部会 (2002)(以降,土木学会(2002)と略)では,下 田沖の実地形を対象に,伝播過程の海域におけ る空間格子間隔が最大水位上昇量に与える影 響を実証的に検討しており,水深100m以深で は格子間隔を800mとしても影響はほとんど見 られないが,水深100m~50mでは格子間隔を 200m以下に,50m以浅では,50m以下の格子 間隔まで細かくすることが必要であるとして いる(図 2.3-6).

なお,海域の地形データソースについて,公 的機関等で既に整備公開されている情報を図 2.3-7,図 2.3-8 に示す.

図 2.3-6 浸水深・伝播時間,経路及び最大水位上昇量と格子間隔の関係(土木学会, 2002)

資料名	機関名: Web サイト	概要	適用
ET0P02	米国地球物理学データセンター (Nation) Geophysical DataCenter) http://www.ngdc.noaa.gov/mgg/global/etopo2.html	2 分格子の水深 データ	外洋部
ET0P01	米国地球物理学データセンター (Nation) Geophysical DataCenter) http://www.ngdc.noaa.gov/mgg/global/global.html	 1分格子の水深 データ 	外洋部
GEBCO	英国海洋センター (British Oceanographic Data Center) http://www.bodc.ac.uk/	1 分格子のデー タ	外洋部
JT0P01	(財)日本水路協会 http://www.mirc.jha.jp/products/finished/JTOPO1/	 北西太平洋にお ける緯度経度1 分グリッド 	外洋部
JT0P30	(財)日本水路協会 http://www.mirc.jha.jp/products/finished/JTOPO30/	日本周辺海域に おける緯度経度 30 秒グリッド	外洋部
120 [°] E 1 48°N 42°N 38°N 30°N 24°N 18°N 12°N 12°N 6°N 120°E 1	30 ¹ / ₂ 140 ¹ / ₂ 150 ¹ / ₂ 190 ¹ / ₂ 170 ¹ / ₂ 180 ¹ / ₂ <td>140 °E 11507 11507 11505 11405 11505</td> <td>150°E 44°N 42°N 58°N 50°N 24°N 24°N 15°D</td>	140 °E 11507 11507 11505 11405 11505	150°E 44°N 42°N 58°N 50°N 24°N 24°N 15°D
(左図)JTOPO1 (右図)JTOP3	: 人工衛星(Geosat/ERM, Geosat/GM, ERS, ERS-1/GM, TOPEX/POSEIDON)のデ た水深値を JODC 保有の測量データに基づいて補正したデータ 30 品質管理済みの測量データや水深データセット,および新規に作成した等 精度の高いデータを優先して統合編集。日本周辺海域における緯度経度 30 ルで、基データが存在しない海域には近傍の水深データから補間した推定 秒)グリッド標高値を採用してデータファイルに収録。	ータから 1 分グリッ ៖深線図の数値化デー) 秒グリッドの水深デ 値を、陸域には GLOBF	ドで推定し タを基に, ータファイ Eの1km(30

図 2.3-8 海域に関する地形データソース(沿岸部)

(3) 陸域地形

陸域における津波の浸水予測計算では、地形 データの地形近似精度が重要である.用いた地 形データで結果が左右されるため、ハザードマ ップなどの利用目的に応じた地形データの作 成,格子間隔の選定が重要となる.

地方自治体によるハザードマップ作成・活用 を支援するため内閣府ほか (2004)では、計算精 度に関して,計算格子間隔よりも標高データの 精度が重要であることを記述している.特に津 波による浸水が予測される地域の陸域標高デ ータは、浸水深の評価のため1mより詳細な精 度が必要であり、国土地理院の 1/25,000 地形図 から作成されている 50 m メッシュ標高データ ではなく、都市計画図 1/2,500 を用いてデータ を作成し、計算格子間隔は12.5mを基本とする ことを示している (図 2.3-9). 50 m メッシュ標 高データは、

全国で整備・公開されている地形 データであるが、津波による浸水が懸念される 沿岸部におけるデータ精度が低く,標高値に数 m オーダーの誤差を含む場合もある.一方で, 全ての沿岸地域を 12.5 m 格子間隔で計算する ことは多くの時間・経費を必要とする.よって, 津波計算の対象範囲が国・県等という広域であ り,かつ概略的な浸水範囲を把握することが目 的であるのものについては,検討対象の範囲に 応じて 50~100 m 等の格子間隔を設定し,浸水 域を把握するものと記されている.

都市計画図 1/2,500 を利用した検討例として, 劉ほか(2001)は, 5.5 m 格子と 50 m 格子によ る数値解析による比較検討を実施している.構

図 2.3-9 標高が浸水深に与える影響模式図(内 閣府ほか, 2004)

造物等の影響が少ない場合であれば粗い格子 間隔で津波遡上を予測解析できるが,市街地氾 濫流の流況を詳細に調べるため場合には格子 間隔を細分化して家屋などの土地利用の影響

図 2.3-10 津波最大浸水範囲と最大浸水深の比 較(劉ほか, 2001)

メッシュ	建物	道路	浸水シミュレーションの用途
1m	低層建物も一戸単位での再現	街区内の幅4m道路	住民個々の避難シミュレーシ
	可能		ョン
2.5m	中高層建物の再現可能である	街区を区切る幅4m~	街区単位での避難シミュレー
	が、低層建物の一戸単位での	6m道路	ション。構造物への影響評価
	再現は不可能		
5m	中高層建物の再現可能である	街区を区切る幅6m以	市町村単位での防災計画(街
	が、街区内の低層建物は再現	上の道路	区を基本にした被害想定が可
	できない。		能)
10m	高層建物の再現は可能	街区をつなぐ幅15m	県単位での防災計画(メッシュ
		~の道路	を基本にした被害想定が可
			能)
25m	建物の表現は不可	「幅20m~以上の道路	被害予測
50m	建物の表現は不可	道路の再現は不可	おおまかな被害予測

表 2.3-1 空間格子間隔と地物表現の再現程度

を考慮した数値解析を行うことが有効である と示している (図 2.3-10).

近年では、国土地理院や国土交通省等は航空 レーザスキャナ測量(図 2.3-11)による精密地 盤高計測を用いた 5 m メッシュの数値標高モデ ルを整備し、成果が公表されている.航空レー ザスキャナ測量では、固定翼や回転翼などの航 空機に搭載したレーザスキャナから地上に向 けてレーザパルスを連続的に照射し,反射光を 捕捉してその往復時間から距離を測定する.レ ーザスキャナにより得られたデータから,雲・ 空気中の塵・ビル等による乱反射等に起因する ノイズを除去したもので,樹木や建物・構造物 等の地物の地表における高さを計測したデー

表 2.3-2 メッシュデータの収集手法の検討

	メッシュサイズ	データ名	備考
	500m	J-DOSS	日本海洋データセンター(JODC)のオンラインサ ービス座座標系はWGS84で提供されている。
伝 播 計 算	250m	大陸棚の海の基本 図	大陸棚の海の基本図(海上保安庁)は縮尺が 1:1000000~1:200000で整備されている。各基本 図より250mメッシュが作成可能
	125m	大陸棚の海の基本 図	大陸棚の海の基本図(海上保安庁)は縮尺が 1:1000000~1:200000で整備されている。
	50m	沿岸の海の基本図	沿岸の海の基本図(海上保安庁)は縮尺が 1:10000~1:50000で整備されている。1:50000の 基本図より50mメッシュが作成可能。
	25m	沿岸の海の基本図	1:25000~1:10000の沿岸の海の基本図(海上保 安庁)より25mメッシュが作成可能
	10m	深浅測量結果	特に河口付近で必要な場合には、ナローマルチ ビーム等を利用した面的な深浅測量結果を利用 することも可能
河川遡	50m	数值地図50m	国土地理院より1/25000地形図をベースに作製 されている。
上 浸水計	25m	1/25000地形図	1/25000地形図より、25mメッシュが作成可能で ある。
<u>算</u>	1 0 m	数值地図10m	国土地理院より1/10000及び1/5000をベースに 作成されている。主に火山地域で作成されてい る。
	5m	数值地図5m	国土地理院により航空レーザスキャナ測量によ る精密地盤高計測により求めた数値標高モデ ル。現在、関東と中部の一部エリアが公開されて いる。
浸 水 計 算	2.5m	国土基本図 都市計画図など	1/2500~1/5000の大縮尺の実測図、たいてい の市町村の都市計画区域内で整備されている。
	2.5m以下		特に浸水計算で必要な場合には、航空レーザス キャナ測量等を利用した面的な測量結果を利用 することも可能

タを DSM (Digital Surface Model) と呼ぶ. それ に対して, DEM (Digital Elevation Model) は, DSM からさらに地物の表層面をフィルタリン グにより除去し,地表面の高さのみのデータを いう(図 2.3-12 参照). なお,計測された点群デ ータの精度は,計測時の航空機の高度や調整用 基準点の状況により異なるが,水平方向に±30 cm, 鉛直方向に±15 cm 程度の誤差となる.

日下部ほか(2006)は、航空レーザスキャナ 測量データを用いた空間格子間隔の違いによ る地形再現状況や使用用途、データの収集手法 について検討結果をまとめている(表 2.3-1,表 2.3-2).

同様に,村嶋ほか(2006,2007)は,航空レ ーザスキャナの津波遡上解析への適応性およ び地形モデルの空間格子間隔の影響について 検討しており,空間格子間隔による浸水範囲の 比較結果を示している.彼らによれば,格子間 隔を小さくするにつれて,浸水面積も小さくな る傾向があり,防潮堤背後の市街地部における 最大浸水深2m以上のエリアの浸水範囲全体に 占める割合が30%(40m格子)から4%(5m格 子)に大きく減少する.これは,大きな格子間隔 では津波遡上を阻害する地形の凹凸が少ない のに対し,詳細な地形モデルは、地形の凹凸を

図 2.3-11 航空レーザスキャナ測量のイメージ

より正確に再現しており,氾濫水が窪地に早め に集積することなどによるためとしている.レ ーザデータを用いた 5~10m間隔程度の地形モ デルを用いた津波数値解析は,市街地の起伏, 堤防,盛土の効果を表現でき,浸水範囲の予測 や堤防等の効果検証において有効であること を示している(図 2.3-13).また,詳細な地形モ デルを用いることにより,津波氾濫水の挙動を 考慮した面的な防護方法の効果検証が可能で あり,対象地の状況に応じて適切な格子間隔を 用いた検討が必要であることを示している(図 2.3-14).

国土交通省・国土技術政策総合研究所(2012) は、津波による浸水想定を行うにあたって陸域 における地形データを作成する際には航空レ ーザスキャナ測量の成果等を活用することを

図 2.3-12(a) 空間格子間隔毎の地形表現 (DSM)

図 2.3-12(b) 空間格子間隔毎の地形表現(DEM)

図 2.3-13 断面図及び空間格子間隔による浸水 面積比較. (村嶋ほか, 2006)

基本とし,最小計算格子間隔は 10 m 程度より 小さくするとしている.

表 2.3-3 には、津波浸水想定に関わる津波数 値解析の手引き・マニュアル類において推奨し ている地形モデルの空間格子間隔および地形

図 2.3-14 空間格子間隔による堤防配置効 果の違い(村嶋ほか, 2007)

データソースについてまとめた.なお,データ ソースに関しては,それぞれの作成時における 入手可能な地形データから設定されているの が現状である.

陸域の地形データソースについて,公的機関 等で既に整備・公開されているものを図 2.3-15 に示す.

マニュア ル (発行 年)	土木学会 原子力土 木委員会津波評価部 会「原子力発電所の 津波評価技術」 (2002)	内閣府等「津波・高潮ハ ザードマップマニュア ル」(2004)	(財) 国土技術研究 センター「津波の 河川遡上解析の手 引き(案)」(2007)	国土交通省「津波浸水 想定の設定の手引き Ver.1.20」 (2012)
空間 格子 間隔	$\Delta x / \alpha g T^2 \le 7 \times 10^{-4}$	12. 5m	波長の 1/100 河道の横断方向を 5 分割以上 河川のソリトン分 裂波雨現では 2m 格子で計算	Δx / cgT ² ≤ 7 ×10 ⁻⁴ マニングの粗度係数 n =0.03 の場合 または 10m以下
地形 データ ソース	・ 数値地図 (精度は十分でない ことに留意)	・地形図等高線・標高値 (1:2,500地形図など) ・数値地図 (50m格子) ・航空写真測量	河川縦横断測量結 果〈河川内〉	- LIDAR (航空レーザ測量)

表 2.3-3 津波数値解析に関するマニュアルにおける地形モデルに関する記述

資料名	機関名:Web サイト	概要	適用
数値地図 50mメッシュ標高	国土地理院 http://www.gsi.go.jp/geoinfo/dmap/dem50m-index.html	1/25000 地形図に描か れている等高線を計測 してベクトルデータを 作成し、それから計算 によって求めた数値標 高モデル	汀線付近 の低平地 の現住にる 必要あり
基盤地図情報 (数値標高モデル) 5m レーザ測量	国土地理院 http://www.gsi.go.jp/kiban/index.html	データ精度は、 ±30cm 以下	
基盤地図情報 (数値標高モデル) 5m 写真測量	(航空レーザ副盤による) 歴紀の1994 データ修準部(同(北海道)	データ精度は ±数十 cm~1m 程度	
基盤地図情報 (数値標高モデル) 10m		1/25000 地形図の等高 線に基づくデータであ り、場所により数mの 誤差あり。	
1/2500 地形図 (国土基本図)	地方自治体 等高線や個々の単点標高情報	 1m ごとの等高線が記載、標高値の掲載密度 が高い・ 	

図 2.3-15 陸域に関する地形データソース(沿岸部)

(4) データ補間方法

収集した水深・標高データは、それぞれデー タの収集と整理の手法や利用目的の違いもあ り、必ずしも整合的ではないことがある.津波 の数値計算のための地形モデルとするうえで、 これらのデータを統合・補間して規則的なメッ シュデータを作成する必要がある.地形データ の補間には、二次元である上に海岸線などの複 雑な形状を有しているため、高度な補間技術が 必要となる.特に、海域と陸域の境界である汀 線の形状は補間が難しく、注意を要する.

高橋(2002)は、地形条件に対する補間法の整 理を行い、仮想地形に対して各補間法を実際に 適用し、地形条件の再現性について比較してい る(表 2.3-4,図 2.3-16).

表 2.3-4 の各補間法から再現された地形を図 2.3-17 に示す.陸を含む地形の場合は、スプラ イン補間が最もよく仮想地形を再現しており、 続いてクリギング法、Natural Neighbors 補間法 が比較的良い結果となり、島を含む地形の場合 では、スプライン補間が最も元地形を再現して おり、続いて逆距離加重法、Natural Neighbors 補 間法が比較的良い結果を示している.クリギン グ法では、島情報が抜け落ちてほとんど海域に なっている.また、Natural Neighbors 補間法は アルゴリズム上の制約から境界付近での補間 が行えないため、補間領域を計算対象領域より 広く設定する必要がある.

また,補間法・メッシュデータの作成方法と して,中央防災会議(2003,2012)の手法は, 収集データから TIN (Triangulated Irregular Network;三角形不規則網)を作成し,線形補間 により各格子に対して格子中心の標高を与え る方法を用いている.村嶋ら(2006)も同様に TIN を作成し,三角形平面から内挿して格子中 心の値を求める手法を用いている.図2.3-18に TIN とそこから生成されたメッシュデータ,図 2.3-19にTIN によるメッシュデータ作成の概念 図を示す.

図 2.3-16 補間法比較に用いた仮想地形(高橋, 2002)

	入力点の考慮範囲	入力点の精度	入力点の任意性	計算負荷
スプライン補間法	Local	Exact	Deterministic	中
クリギング法	Local	Exact	Stochastic	考慮範囲に依存
逆距離荷重法(IDW)	Local	Exact	Deterministic	- 小
Natural Neighbors 補間法	Local	Exact	Deterministic	小
トレンド・サーフェース解析法	Global	Approximate	Stochastic	次数に依存
最近隣法	Local	Exact	Deterministic	小

表 2.3-4 補間法の分類(高橋, 2002)

図 2.3-17 補間法による仮想地形の再 現性比較(高橋, 2002)

図 2.3-18 TIN(左)とメッシュデータ(右)

図 2.3-19 TIN の概念図

(5) 粗度データ

津波が伝播し浅海域や陸域に進入すると,海 底や遡上域の底面摩擦による抵抗が無視でき なくなる(今村ら,1986,図2.3-20).そのため, 浅海域や陸域で使用される浅水理論(非線形長 波理論)や非線形分散波理論による解析モデル では,海底摩擦項を考慮しなければならない.

田中ら(1998)は波動境界層の摩擦係数に関し て検討を行い,周期が長く水深が浅い場合,海 底摩擦係数は水深によってきまり,定常流に類 似した性質を示すことを明らかにしている.通 常,津波計算における海底摩擦項には,定常流 の抵抗則が用いられ,海底摩擦項の表現として は,以下に示すマニング則をもとにした抵抗項 を用いることが一般的である.

$$\frac{gn^2}{D^{7/3}} M\sqrt{M^2 + N^2}$$
(2.3-4)
$$\frac{gn^2}{D^{7/3}} N\sqrt{M^2 + N^2}$$
(2.3-5)

ここで,n はマニングの粗度係数,D は全水深, M・N は x, y 方向の流量フラックス,g は重力 加速度を表す.海域での粗度係数の考え方とし ては n=0.025 程度の値を用いることが多い(首 藤ほか,2007).

正村ほか(2000)は、実用的な摩擦係数として、マニング則を使う時に海底勾配や水深、周期の影響も受けず、底質の等価砂粒粗度 Ks のみから粗度係数 n を決定する関係式を提案している.この式から、Ks=2cm の場合、n=0.025 となる.

$$n = \frac{0.15\kappa_s}{\sqrt{g}} \tag{2.3-6}$$

一方,陸域での抵抗・粗度係数の考え方とし ては、土地利用状況を考慮し用途に応じた粗度 係数の設定が必要である.これまで津波・洪水 の数値計算における粗度係数は経験的に与え られており、その妥当性を与える基準に課題が 残されていた.河川洪水氾濫においては、水理 模型実験から密集市街地における粗度係数を 直接推定した福岡ほか(1994)の結果があり、 津波氾濫計算においては、経験的に用いられて いる相田(1977)の係数や、基礎的な水理実験 の研究例としてGoto & Shuto(1983)の結果が ある.これらの過去の研究結果を踏まえ、小谷 ら(1998)は土地利用を6種類に分類し、それ ぞれ対応する粗度係数を設定・提案している (表 2.3-5).

内閣府ほか(2004)においても、遡上計算時の 土地利用状況に応じた粗度係数を考慮するこ とを記述しており、小谷らの方法は中央防災会 議(2012)(表 2.3-6)や国土交通省・国土技術 政策総合研究所(2012)等で用いられている手 法である.

粗度係数の設定にあたっては,土地利用に関

図 2.3-20 浅水理論式における各項の大きさ の比較 (今村ほか, 1986)

する基礎データとして、国土数値情報は全国で 整備されており、これによることが多い.ただ し、このうち細かなメッシュ単位で土地利用を データ化した細密数値情報は首都圏等の一部 の地域のみ整備されているのが現状である(表 2.3-7).

家屋による津波の挙動への影響を考慮した 津波遡上計算手法としては、小谷ほか(1998) の方法のように家屋を抵抗要素として扱う抵 抗モデルと、高い地盤として扱う地形モデルが ある(図 2.3-21).地形モデルにおいては、正方 格子で複雑な土地利用状況を近似することは 難しく、数m程度の細かい格子間隔が必要とな る.

油屋・今村(2002)は、非定常性を考慮した 津波に対する家屋の抵抗を合成等価粗度を用 いてモデル化し津波遡上計算に取り入れ、浸水 深や遡上距離がどの程度変化するのかを空間 格子間隔に着目し、従来手法と比較検討をして いる.モデル居住区の遡上計算における、合成 等価粗度モデルでは、格子間隔が50m(家屋ス ケールの5倍程度)よりも小さい場合に最大浸 水深と最大遡上距離の精度が向上し、それより も大きな格子間隔では従来モデルを用いたほ うが良いと示している.また、家屋と樹木の抵 抗を合成等価粗度により評価した計算結果で は,従来の一定粗度を用いた計算結果と比較すると遡上域が大きく減少すると報告している (図 2.3-22,図 2.3-23).

表 2.3-5 Manning の粗度係数の比較と小谷ほか (1998)による係数

福岡	İĠ.	(1994)	相日	Ξ (1977)	後萬	68. j	宮藤(1983)		本研	究
x :	ዎ	推定租度	× :	分	等価係数	×	分	推定係数	X	分	設定框度
80%	2	0.1				高調	的度	0.11			
50~8 %	80	0.096	密集地	城	0.07				高層	密度 全区	0:080
20~: %	50	0.084	やや答 の高い 叱城	渡 、	0.05	中著	的度	0.05	中活	密度 全区	0.050
0∼% %	20	0:056				低後	8 BÉ	0.03	低	密度 軍区	0.040
11 i	踏	0.043	その1 1 地	建	0.02				森林/ 樹園 林合	威(果 ◆ 防潮 ず合)	0.030
									田畑	城 (荒 合)	0,020
			汀線付 (防潮 含)	近 財林	0,04				海波 城 (i) 合ず)	• 河川 防潮林	0.025

表 2.3-6 土地利用に基づく粗度係数の設定値(中 央防災会議, 2012)

データ名	国土数值情報 (土地利用)	細密数值情報
縮尺	100m メッシュ	10m メッシュ
住宅地	建物用地	一般低層住宅地 密集低層住宅地 中高層住宅地 商業,業務用地
相度係数		0.040~0.080
工場地等	1	工業用地 その他の公共公益施設用地
粗度係数	0.040	0.040
農地	日子の仙農用地	田 他・その他の農地
相度係数	0.020	0.020
林地	森林	山林・荒地等
相度係数	0.030	0.030
水域	河川地及び湖沼 海浜 海水域	河川 · 湖沼等 海
粗度係数	0.025	0.025
そ の他(空地、緑地)	荒地、その他の用地(空 地等)、幹線交通用地、 ゴルフ場	公園・緑地等、造成中地、 道路用地、空地、その他
和度係数	0.025	0.025

表 2.3-7 土地利用に関する基礎データソース

対象範囲	データ名	作成·整備機関
全国	国土数值情報(土地利用)	国土交通省
三大都市圈	細密数値情報(10mメッシュ土地利用)	国土地理院
-	都府県提供メッシュデータ	各都府県

(b) 抵抗モデル

図 2.3-21 地形モデルと抵抗モデルの概念図

al manufa	粗度係数 n			
计异方法	居住区域	その他		
(a) 合成等価粗度モデル	$n = \sqrt{n_0^2 + \frac{C_0}{2gk} \times \frac{\theta}{100 - \theta} \times D^{4/3}}$	0.025		
(b) 一定粗度モデル (小谷ら, 1998)	0.06	0.025		
(c) 一様粗度モデル	0.025			

図 2.3-22 計算条件比較(油屋·今村, 2002)

(a) Case-1 (津波規模・大, 居住区規模・小)

牧之柄	合成等	靜価粗度	一定租周	ま(小谷ら)	一様粗度	
1877 (m)	最大 漫水深	最大 遡上距離	最大 授水深	最大 遡上距離	最大 浸水深	最大 遡上距離
5	0	Pres O	0		0	4
10	(0,0)	O S	0	Δ	0	Δ
20	$\langle \cdot \rangle$	С	0		0	4
50	0	•. O 🔹	0 '		С	Δ
100	0	×	0	- O	0	Δ
200	x	×	0	0	, Ç	0

(b) Case-2(津波規模・大,居住区規模・大)

	合成等	停価粗度	一定租馬	き(小谷ら)	一樣粗度	
- (m)	最大 浸水深	最大 遡上距離	最大 浸水深	最大 遡上距離	最大 漫水深	最大 遡上距離
5	Ο.	0	Δ	×	Δ	×
10	0	O .	Δ	×	Δ	×
20	ւ.	0	Δ	×	Δ	×
50	O:	O.II	0	×	Δ	. ×
100	×	×	Ф.	4	Δ	× .
200	×	×	Q	۰ <u>۵</u>	Δ	×

図 2.3-23 最大浸水深分布比較(油屋·今村, 2002)

(6) 構造物データ

津波の遡上・浸水について検討する際には, 大規模な人工構造物の影響を無視できない.国 土交通省・国土技術政策総合研究所(2012)で は,津波の伝播過程や遡上過程にあって地盤高 より高い線的構造物(海岸堤防,港湾・漁港施 設,河川堤防,道路や鉄道盛土等)について, 計算格子間隔より幅が広いものは地形データ として表現し,計算格子間隔より幅が狭いもの は,格子辺上にて越流条件を考慮することを基 本とすると示されている(図 2.3-24).

国土交通省(2005)では,平均地盤高から比高 が 50 cm 以上のものは,モデル化する必要があ ると示している.具体的には堤防,二線堤,鉄 道,主要な道路やその他の盛土等である.

構造物条件設定の考え方としては,内閣府ほ か(2004)では,水門・陸こう等の防災施設の機能 状況(閉鎖・開放)について,安全側を考慮す ることを基本とし,作成目的,対象津波や地域 特性に応じ,実態に合わせて設定することとし ている.安全側とは,津波到達時間が短いため 閉鎖が困難な場合や地震動による変形で閉鎖 不可な場合を想定し,構造物が機能上では開放 状態であるとして取り扱うことを意味する.た だし,水門・陸こう等について,耐震性を有し 自動化された施設,常時閉鎖の施設,耐震性を 有し津波到達時間より早く閉鎖できると考え られる施設についてはその限りではない.

また,構造物の被災条件の考え方としては, 東北地方太平洋沖地震による津波で見られた ような海岸堤防や河川堤防等の破壊事例を踏 まえ,最大クラス津波に対して,津波が越流し 始めた時点で「破壊する」ものとし,破壊後の 形状は,「構造物なし」と想定して設定すること を基本とすると国土交通省・国土技術政策総合 研究所(2012)に示されている.

防波堤や堤防等の越流境界条件の取り扱い として、後藤・佐藤(1993)は、水位がその天 端高を越えた場合には、以下の本間公式を用い て単位幅当りの越流量Qを計算している.

$$Q = 0.35H_1\sqrt{2gH_1} \qquad H_2 \le \frac{2}{3}H_1 \qquad (2.3-7)$$

$$Q = 0.91H_1\sqrt{2g(H_1 - H_2)}$$
 $H_2 > \frac{2}{3}H_1$ (2.3-8)

ここに, H₁, H₂は, 図 2.3-25 に示すように天 端高を基準とした堤前後の水深で, H₁≧H₂とす る.

図 2.3-24 津波浸水シミュレーションにおける構造 物の取り扱いの例(国土交通省・国土技術政策総合 研究所(2012)「津波浸水想定設定の手引き」によ

図 2.3-25 防波堤からの越流に関する模式図(後藤 ほか 1993).

2.3.2 シミュレーション手法

津波シミュレーションを行うにあたり、考慮 すべき現象や計算資源等の条件の下で、適切な 理論、解析手法を選定することが必要となる、 本項では、既往研究で多く用いられてきた津波 伝播シミュレーション手法について概観する、 各手法の詳細については参考文献を参照され たい。

(1) 基礎方程式

津波による波動現象は、一般的には長波理論 の仮定のもとで定式化されている.長波理論と は、波長に対する水深の比が小さく、重力加速 度に比べ水粒子の鉛直加速度が小さい場合に 適用される水面波の理論の総称である.長波理 論の中でも適用性に応じて様々な理論展開が 行われており,以下の4つの理論が多く用いら れている.

- ·線形長波理論
- ·線形分散波理論
- 非線形長波理論
- 非線形分散波理論

ただし,近年では津波波力評価など波先端の 詳細検討が必要とされる分野において,長波理 論の仮定を導入せず,Navier-Stokes 方程式を VOF 法や粒子法によって直接解くことも行わ れている.また,静水圧の仮定を導入し,Navier-Stokes 方程式を差分法で解くことによって,三 次元津波解析を実施する試みも行われている (Furumura and Saito, 2009).

ここから前述した 4 つの長波理論について, 各理論における支配方程式は非回転・非圧縮性 流体の支配方程式から導出することができる. 簡単のため,二次元 XZ 平面における Euler の 運動方程式を出発点とした場合,以下の2点の 仮定によって4つの長波理論の支配方程式が求 められる.

- ・波高水深比 ε ,相対水深 σ の値
- ・Eulerの運動方程式に対して近似度

波高水深比 *E*(津波水位変動量/静水深)は波の 非線形性の強さ,相対水深 *σ*(静水深/津波波長) は波の分散性の強さの目安とされている.以下 に各理論の支配方程式の導出手順を示す.連続 の式, Euler の運動方程式は以下の通りである.

$$grad v = 0$$
 , $\frac{Dv}{Dt} = \frac{1}{\rho} grad p$ (2.3-9)
 v : 流速ベクトル, ρ : 単位体積質量,
 p : 圧力

また,非回転の条件式(渦なし流れ),水表面, 及び水底の条件は次式で表せる.

$$\frac{\partial u}{\partial z} = \frac{\partial w}{\partial x} \tag{2.3-10}$$

$$p = 0 \text{ on } z = \eta \tag{2.3-11}$$

$$w = \frac{\partial \eta}{\partial t} + \frac{\partial \eta}{\partial x} \text{ on } z = \eta$$
 (2.3-12)

$$w = -u \frac{\partial h}{\partial x}$$
 on $z = -h$ (2.3-13)

ここで, η: 水位変動, h: 静水深, u,w:x, z方向の流速, p: 圧力.

次に無次元化を考える. 左辺側の小文字変数 は有次元量,右辺側の大文字変数は無次元量を 表す.

$$x = l_0 X, \quad z = h_0 Z, \quad t = \frac{l_0}{c_0} T$$

$$u = c_0 \frac{\eta_0}{h_0} U, \quad w = c_0 \frac{\eta_0}{l_0} W, \quad p = \rho g h_0 P \qquad (2.3-14)$$

$$\eta = \eta_0 N, \quad h = h_0 H, \quad c_0 = \sqrt{g h_0}$$

 l_0 :水平方向特性長(波長), h_0 :鉛直方向特性長(水深) η_0 :波の運動の大きさを表す特性(津波水位) c_0 :波の伝播速度を表す特性(波速)

ここで、無次元パラメータとして波高水深比 $\eta_0/h_0 \, \varepsilon \, \varepsilon$ 、相対水深 $(h_0/l_0)^2 \, \varepsilon \, \sigma$ と表す.アーセ ル数は $Ur = \varepsilon/\sigma$ となる.これらの関係を用いて無 次元化すると連続の式、運動方程式は次式のよ うになる.

$$\varepsilon \frac{\partial U}{\partial X} + \varepsilon \frac{\partial W}{\partial Z} = 0$$

$$\varepsilon \frac{\partial U}{\partial T} + \varepsilon^2 U \frac{\partial U}{\partial X} + \varepsilon^2 W \frac{\partial U}{\partial Z} + \frac{\partial P}{\partial X} = 0$$
(2.3-16)

$$\sigma \left[\varepsilon \frac{\partial W}{\partial T} + \varepsilon^2 U \frac{\partial W}{\partial X} + \varepsilon^2 W \frac{\partial W}{\partial Z} \right] + 1 + \frac{\partial P}{\partial Z} = 0$$
(2.3-17)

また,非回転の条件,水表面,水底の条件は次 式のようになる.

$$\varepsilon \frac{\partial U}{\partial Z} = \sigma \left[\varepsilon \frac{\partial W}{\partial X} \right]$$
(2.3-18)

$$P = 0$$
 on $Z = \varepsilon N$ (2.3-19)

$$\varepsilon \frac{\partial N}{\partial T} + \varepsilon^2 U \frac{\partial N}{\partial X} = \varepsilon W \text{ on } Z = \varepsilon N$$
 (2.3-20)

$$\varepsilon U \frac{\partial H}{\partial X} + \varepsilon W = 0$$
 on $Z = -H$ (2.3-21)

後藤(1984)の方法にしたがって Peregrine(1967) の式を誘導する. ε~σ≪1と仮定する. 連続の式 (2.3-15),運動方程式(2.3-16),(2.3-17)を鉛直方 向に積分する.連続の式(2.3-15)に水表面連続の 条件(2.3-20),水底の条件(2.3-21)を適用すると 次式のように表せる.

$$\varepsilon \frac{\partial N}{\partial T} + \varepsilon \frac{\partial}{\partial X} \int_{-H}^{\varepsilon N} U dZ = 0$$
(2.3-22)

鉛直方向の運動方程式(2.3-17)に水表面圧力条件(2.3-19)を適用すると以下の関係が得られる.

$$P = \varepsilon N - Z - \sigma \int_{\varepsilon N}^{Z} \frac{dW}{dT} dZ$$

$$(2.3-23)$$

$$\hbar \varepsilon \hbar U, \quad \frac{dW}{dT} = \varepsilon \frac{\partial W}{\partial T} + \varepsilon^{2} U \frac{\partial W}{\partial X} + \varepsilon^{2} W \frac{\partial W}{\partial Z}$$

上式の関係と、水表面波形連続条件(2.3-17),水 底条件(2.3-19)から,水平方向の運動方程式(2.3-16)は以下のようになる.

$$\varepsilon \frac{\partial}{\partial T} \int_{-H}^{\varepsilon N} U dZ + \varepsilon^2 \frac{\partial}{\partial X} \int_{-H}^{\varepsilon N} U^2 dZ + \varepsilon (H + \varepsilon N) \frac{\partial N}{\partial X}$$
$$= \sigma \frac{\partial}{\partial X} \int_{-H}^{\varepsilon N} \int_{\varepsilon N}^{Z} \frac{dW}{dT} dZ dZ + \sigma \frac{\partial H}{\partial X} \cdot \int_{-H}^{\varepsilon N} \frac{dW}{dT} dZ$$
(2.3-24)

また,鉛直方向流速は連続の式(2.3-15)と水底条 件(2.3-21)から以下のように表せる.

$$\varepsilon W = -\varepsilon \frac{\partial}{\partial X} \int_{-H}^{Z} U dZ$$
(2.3-25)

水平方向流速Uを断面平均流速 \overline{U} とそれからの ずれUに分ける.このとき,非回転の条件(2.3-18)からUは σ または ε のオーダーの量であると 考えられるため、次のように仮定できる.

$$U = \overline{U} + \sigma U' \tag{2.3-26}$$

又は $U = \overline{U} + \varepsilon U'$ (2.3-27)

式(2.3-27)の関係を式(2.3-22), (2.3-24), (2.3-25) に代入すると,積分形の式が得られる.

- ・ 連続の式 $\varepsilon \frac{\partial N}{\partial T} + \varepsilon \frac{\partial}{\partial X} \left[(H + \varepsilon N) \overline{U} \right] = 0$ (2.3-28)
- 水平方向の運動方程式

$$\varepsilon \frac{\partial}{\partial T} \Big[(H + \varepsilon N) \overline{U} \Big] + \varepsilon^2 \frac{\partial}{\partial X} \Big[(H + \varepsilon N) \overline{U}^2 \Big] + \varepsilon^4 \frac{\partial}{\partial X} \int_{-H}^{\varepsilon N} U'^2 dZ + \varepsilon (H + \varepsilon N) \frac{\partial N}{\partial X} = \varepsilon \frac{\partial}{\partial X} \int_{-H}^{\varepsilon N} \int_{\varepsilon N}^{Z} \frac{dW}{dT} dZ dZ + \varepsilon \frac{\partial H}{\partial X} \cdot \int_{-H}^{\varepsilon N} \frac{dW}{dT} dz$$
(2.3-29)

・鉛直流速 $\varepsilon W = -\varepsilon \frac{\partial}{\partial X} \left[(Z+H)\overline{U} \right] - \varepsilon^2 \frac{\partial}{\partial X} \int_{-H}^{Z} U' dZ \qquad (2.3-30)$

上式において、 ε ¹のオーダーまで考慮し、有次 元化すると、

$$\frac{\partial \eta}{\partial t} + \frac{\partial M}{\partial x} = 0$$
(2.3-31)
$$\frac{\partial M}{\partial t} + \frac{\partial \eta}{\partial t} = 0$$

$$\frac{\partial H}{\partial t} + gh\frac{\partial H}{\partial x} = 0$$
(2.3-32)

なる線形理論, ε^2 までのオーダーからは

$$\frac{\partial \eta}{\partial t} + \frac{\partial M}{\partial x} = 0$$

$$\frac{\partial M}{\partial t} + \frac{\partial}{\partial x} \left[\frac{M^2}{D} \right] + g D \frac{\partial \eta}{\partial x}$$

$$= \frac{\partial}{\partial x} \left[\frac{h^3}{3} P_1 + \frac{h^2}{2} P_2 \right] - \frac{\partial h}{\partial x} \cdot \left[\frac{h^2}{2} P_1 + h P_2 \right]$$

$$P_1 = \frac{\partial^2 \bar{u}}{\partial t \partial x} \quad P_2 = \frac{\partial}{\partial t} \left[\bar{u} \frac{\partial h}{\partial x} \right]$$
(2.3-34)

なる積分された Peregrine の式が得られる.また,この式を線形化することで,以下に示す線形分散波理論の方程式が得られる.

$$\frac{\partial M}{\partial t} + gh\frac{\partial \eta}{\partial x} = \frac{\partial}{\partial x} \left[\frac{h^3}{3} P_1 + \frac{h^2}{2} P_2 \right] - \frac{\partial h}{\partial x} \cdot \left[\frac{h^2}{2} P_1 + h P_2 \right]$$
$$P_1 = \frac{\partial^2 \overline{u}}{\partial t \partial x}, \quad P_2 = \frac{\partial}{\partial t} \left[\overline{u} \frac{\partial h}{\partial x} \right]$$
(2.3-35)

同様にアーセル数が大きい場合(ε~1,σ≪1)の 展開を示す.式(2.3-22),(2.3-24),(2.3-25)に式 (2.3-26)の関係を代入することで以下の連続の 式,運動方程式が得られる.

・連続の式

$$\frac{\partial N}{\partial T} + \frac{\partial}{\partial X} \left[D\overline{U} \right] = 0$$
(2.3-36)

・水平方向の運動方程式

$$\frac{\partial}{\partial T} \left[D\overline{U} \right] + \frac{\partial}{\partial X} \left[D\overline{U}^2 \right] + \sigma^2 \frac{\partial}{\partial X} \int_{-H}^{N} U'^2 dZ + D \frac{\partial N}{\partial X}$$
$$= \sigma \frac{\partial}{\partial X} \int_{-H}^{N} \int_{N}^{Z} \frac{dW}{dT} dZ dZ + \sigma \frac{\partial H}{\partial X} \cdot \int_{-H}^{N} \frac{dW}{dT} dZ$$
(2.3-37)

· 鉛直流速

$$W = -\frac{\partial}{\partial X} \left[(H+Z)\overline{U} \right] - \sigma \frac{\partial}{\partial X} \int_{-H}^{Z} U' dZ$$
(2.3-38)

ここで, *D*=*H*+*N*であり, 全水深を表す. 水平 方向の運動方程式中の定積分項は以下のよう に求められる.

$$\int_{-H}^{N} \frac{dW}{dT} dZ = -\left[\frac{D^2}{2}F_1' + DF_2'\right] + O(\sigma)$$
(2.3-39)

$$\int_{-H}^{N} \int_{N}^{Z} \frac{dW}{dT} dZ dZ = -\left[\frac{D^{3}}{3}F_{1}' + \frac{D^{2}}{2}F_{2}'\right] + O(\sigma)$$
(2.3-40)

$$F_{1}' = -\frac{\partial}{\partial T} \left(\frac{\partial \overline{U}}{\partial X} \right) + \overline{U} \frac{\partial^{2} \overline{U}}{\partial X^{2}} - \left(\frac{\partial \overline{U}}{\partial X} \right)^{2}$$
(2.3-41)

$$F_{2}' = \frac{\partial}{\partial T} \cdot \frac{\partial}{\partial X} \left(\overline{U} \cdot \frac{\partial H}{\partial X} \right) + \overline{U} \cdot \frac{\partial^{2}}{\partial X^{2}} \left(\overline{U} \frac{\partial H}{\partial X} \right)$$
$$- \frac{\partial \overline{U}}{\partial X} \cdot \frac{\partial}{\partial X} \left(\overline{U} \frac{\partial H}{\partial X} \right)$$
(2.3-42)

そのため, σ^{0} のオーダーで式(2.3-37)を有次元 化して書き直すと,

$$\frac{\partial \eta}{\partial t} + \frac{\partial M}{\partial x} = 0 \tag{2.3-43}$$

$$\frac{\partial M}{\partial t} + \frac{\partial}{\partial x} \left[\frac{M^2}{D} \right] + gh \frac{\partial \eta}{\partial x} = 0$$
(2.3-44)

なる浅水理論, σ ¹のオーダーで式(2.3-37)を有次 元化して書き直すと,

$$\frac{\partial \eta}{\partial t} + \frac{\partial M}{\partial x} = 0$$

$$\frac{\partial M}{\partial t} + \frac{\partial}{\partial x} \left[\frac{M^2}{D} \right] + gD \frac{\partial \eta}{\partial x}$$

$$= \frac{\partial}{\partial x} \left[\frac{D^3}{3} F_1 + \frac{D^2}{2} F_2 \right] - \frac{\partial h}{\partial x} \left[\frac{D^2}{2} F_1 + DF_2 \right]$$
(2.3-46)

なるアーセル数が大きい場合の非線形分散波 理論の方程式が求められる.ここで*F*₁, *F*₂は以 下の通りである.

$$F_{1} = \frac{\partial^{2} \overline{u}}{\partial t \partial x} + \overline{u} \frac{\partial^{2} \overline{u}}{\partial x^{2}} - \left(\frac{\partial \overline{u}}{\partial x}\right)^{2}$$

$$F_{2} = \frac{\partial}{\partial t} \left(\overline{u} \frac{\partial h}{\partial x}\right) + \overline{u} \frac{\partial}{\partial x} \left(\overline{u} \frac{\partial h}{\partial x}\right)$$
(2.3-47)

以上の式展開からわかる各長波理論の主な特徴を表 2.3-8 にまとめる.

表 2.3-8 各々の長波理論の特徴.

理論式	式の適用範囲	特徴
線形長波理論	深海域	近地津波で適用
線形分散波理論	深海域	遠地津波で適用
非線形長波理論	浅海域・遡上域	津波の遡上を計
		算可能
非線形分散波理	浅海域・遡上域	ソリトン分裂を
論		計算可能

(2) 離散化解析手法

津波解析において、もっとも広く用いられて いる離散化解析手法は有限差分法であるが、他 にも様々な手法が提案されている.たとえば有 限要素法は差分法と同様に古くから研究が行 われてきたものの(例えば、川原ほか、1976)、境 界条件の設定法、計算誤差及び演算時間のなど の問題から多用はされていない.有限体積法、 境界要素法についても大規模な津波解析事例 は少ない(例えば、赤穂ほか、2008、杉野・登坂、 1999 など).MAC法、VOF法など流体解析分野 で用いられてきた手法については、演算時間の 問題から津波解析に用いられることは現実的 ではなかった.しかしコンピュータの演算性能 向上に伴い現在では,構造物に対する津波波力 の検討といった目的で VOF 法,粒子法等が用 いられる事例もある. **表 2.3-9** に離散化解析手 法の特徴をまとめる.

手法	特徴
有限差分法	・詳細地形モデルが再現困難 ・津波解析事例が豊富
有限要素法	 ・詳細地形モデルが再現可能 ・境界条件設定方法が困難 ・計算誤差が大きい ・演算時間が若干長い
有限体積法	・津波解析事例が少ない
境界要素法	・津波解析事例が少ない
VOF 法, 粒子法	 ・高精度 ・演算時間が長い

表 2.3-9 津波解析手法と特徴