551,466:551,465:551,468:551,46.08(521,42)

砕波と沿岸流

岩田憲幸・藤繩幸雄・田中孝紀

国立防災科学技術センター平塚支所

浅田康夫

北辰電気製作所

関本道夫

鶴見精機工作所

Wave Breaking and Longshore Currents

By

N. Iwata, Y. Fujinawa and T. Tanaka

Hiratsuka Branch, National Research Center for Disaster Prevention

Y. Asada

Hokushin Electric Works, Ltd., Tokyo

and

M. Sekimoto

Tsurumi Precision Instruments Co., Ltd., Yokohama

Abstract

In order to estimate the longshore currents in surf zones from the propagation direction of surface waves, a measurement system consisting of a wave sensor of strain-gauge type and of electromagnetic current meters has been developed.

From the signals of wave-induced pressure fluctuations and from those of horizontal components of water-particle velocities, moving average, variance and covariance for a certain period are obtained, and then it is possible to calculate the direction of incoming surface waves and longshore currents in the surf zone.

まえがき

浅海域における波浪でも、砕波しない場合は、
水位変動ぐ、あるいは水位変動に伴う任意の保さ
の圧力変動 Pと、水粒子の水平速度 v = (u, v)
が測定できれば、進行する波浪の主方向はもちろ
んのこと、波浪のパワーの2次元スペクトルを計
算することが可能である。

砕波帯内部では、波浪は保存されないから、厳密な解析は不可能であるが、上記のv, Pの観測から、進入波の主方向、砕波帯内部で変形された 彼のパワー、沿岸流および離岸流の流速を求める ことができる.

これらの諸量と漂砂による海浜変形との相関を 求めるためには、両者とも長期にわたる連続観測 と観測値の統計的処理が必要となる、このため, 波浪による水面変動や圧力変動,あるいは水粒子 の運動の瞬間値でなく,それらに統計的処理を施 して得られる適当な平均値を連続的に観測するこ とが望ましい.

以下に述べることは、このv, Pおよびそれか ら得られる種々の続計量の観測システムと、実際 の試験観測の解析結果である.

1. 電磁流速計の構造と特性

図1に示すように、直径D(cm)のパイプ内の 平均流速をv(cm/s)とする、パイプの上下に設 置されたコイルにより磁界B(G)を流れに直角

図1 電磁流速計の原理

に与える そのとき、磁界と流れのおのおのに直 **交する両電極間に発生する起電力**€(V)は

 $e = B D v \times 10^{-8}$ (1) となる、電磁流速計はこの原理を応用したもので あるが、実際の設計の場合は、直流による電極と 海水との間の分極現象を避けるため交流による励 磁を行なう、したがって、出力は交流電圧となる

が、電圧レベルが数mVであるため高入力インピー ダンスをもった変換器によりまず直流信号に変換 する、この 直流 $l_{\nu} = 0$ の 場合 30 mAで フルスケール 5 m / s の 流速 に 対 し て (30 ± 20) m A D C に な るようにした、海底面における水粒子の移動速度 は、弧立派を仮定すると

$$\eta = H \operatorname{sech}^{2} \left\{ \sqrt{\frac{3H}{4h^{3}}} (x - ct) \right\} ,$$

$$\frac{u}{\sqrt{gh}} = \frac{\eta}{h} \left\{ 1 - \frac{5H}{4h} - \frac{3H}{2h} \left\{ 2\frac{z}{h} + \left(\frac{z}{h}\right)^{2} \right\} \right\}$$
$$+ \left(\frac{\eta}{h}\right)^{2} \left\{ \frac{5}{4} + \frac{9}{4} \left\{ \frac{2z}{h} + \left(\frac{z}{h}\right)^{2} \right\} \right\}$$

となるから海底ヱ=ーんでは

 $\frac{u}{\sqrt{ah}} = \frac{\eta}{h} \left(1 + \frac{H}{4h} - \frac{\eta}{h}\right), \quad \frac{H}{h} \le 0.78$

であって、波の谷から測った水深んがん=2 mの ときには $u_{max} = 1.4 \text{ m/s} にもなるので高波の$ ときに砕波帯内で観測するときは計器の利得を調 整する必要がある。

当時時 スイノ

電磁海流計発信器

富磁准流計変換器

図2は流速計変換器の動作原理を示す、この変 換器は、電源電圧、周波数、あるいは周囲の温度 変化に対して自動補償を行なう割算回路により外 部からのノイズを防いている。回路の時定数は0.5 以下である.

図3は流速ベクトルの直交2成分を測定するた めの発信器、変換器の配置を示す。発信器は円筒

ケースを採用し、両端に流線形ヘッドを取り付け 全体としてはカブセル形になっている。発信器か らの信号を増幅し、直流電流出力に変換する変換 器は鋼板製ケースに2組格納され、各発信器の間 は鉄製コンジットにより結合されている、出力の 直流電流は電源と同軸の海底ケーブルにより陸上 に伝送され電流電圧変換器により最終出力として

図 3 電磁流速計発信部の構造

±10 Vの直流電圧に変換される。

- 発信器口径: 100 mm 1.
- 2. 耐水 圧: 10 kg/cm²
- 温度範囲: -10~+40℃ 3.
- 源: 100 V, 5.1 A (50 Hz) 4. 雷
- 重:約1000 kg 5. 自
- 6. 糩 度: 0.5% (フルスケール5 m/s に対して)

図4は流速計の方向特性をみるために開水路で テストした結果を示す。テストに使用した水路は 一周 600 mの水流回転性のプール で測定は平均流 速が0.3 m/sと0.5 m/sの場合について行なっ たが図に示したのは0.5 m/s の場合の結果であ る。流れに対する電磁流速計の配置を図の上段に 示す。このようにセットした流速計の上流、約 7.4 mのところに、ブロベラ形流速計と電磁ロッ グをならべて設置して三者同時に流速を測定する。 図の黒丸とそれらの点を平滑した実線は電磁流速 計No.1(上段に黒く塗りつぶして示してある計 器)の測定流速を電磁ロッグの流速で割った値で あり、バッ印および点線はプロペラ形流速計の流 速で割った値である。No.2の計器についても同

図4 電磁流速計の方向特性

様である、方向特性が理想的ならば、No.1の計 器は cos θ でNo.2の計器は sin θ で変化すべき であるが、No.2の計器については特性が非対称 で θ = 120° あたりのひずみが目立つ、この傾向 は、水路の平均流速を 0.3 m/s とした場合もほ ぼ同じ値ででてくる、原因は、図3に示す変換器 の位置にあると思われる。実際に観測を行なう場 合の波による水粒子の移動速度は、この検定時の 流速 0.5 m/s よりはるかに大きいから、その場 合このひずみがどのように大きくなるか問題であ る、

2. 波浪計の構造と特性

波浪計にはひずみゲージ形水圧信号検出器を使 用した. すなわちダイアフラムが受ける水圧を伝 達ロッドによって板状スプリングに伝え, このス ブリングに固定されてあるサファイア製巻わくの 針金ひずみゲージの張力変化, つまり電気抵抗の 変化として取り出す. この際, ひずみゲージの温 度特性を相殺するため4個のひずみゲージでプリ ッジ回路の4辺を構成し温度補償を行なっている.

海底ケーブルによる陸上への伝送はゲイン制御 形発振器(Hydap発振器)による周波数伝送の 方式を使用した、との発振器の基本回路を図5に 示す、この回路の振動は

 $(Rc)^2 \ddot{e} - \zeta Rc \dot{e} + \beta e = 0$ (1) で表現される. 振動解の周波数は

図5 波浪計発信器の基本回路

$$f = \frac{\sqrt{\beta}}{2\pi Rc} \sqrt{1 - \frac{\zeta^2}{4\beta^2}}$$

となるが、 く < β たらば近似的に

$$f = \frac{\sqrt{\beta}}{2\pi Rc} \tag{2}$$

となって発振周波数はβによって制御される.β は帰還回路の伝達ゲインであるから、ここに水圧 信号検出器を組み込めば水圧周波数変換が行なえ る、図のμは信号検出器のゲインが低いとき、所 定の d f が得られるように増幅するときの増幅率 を示す.また、NL は振幅制限回路である.この 周波数変換の特徴は、周波数が帰還回路の伝達ゲ インのみによって定められる点と、基準の周波数 foと周波数変化幅 dfとが独立に設定できる点に ある.

水中発信器の基本回路を図6に示す、点線で囲んである部分が1枚の基盤にはいる.AがHydap

図6 波浪計水中発信器の基本回路

発振器で $\mu d \beta$ 回路は $A \rightarrow D \rightarrow \pi$ 圧信号検出器 $\rightarrow B \rightarrow C \rightarrow A$ の帰還 $\nu - \pi n$ 相当する。 Hydap 発振器A)の出力をDのモジュール②によって増幅し、 水圧信号検出器に伝え、その出力をBのモジュー ル①、②で反転、非反転増幅し、両者をCのモジ ュール①、②で増幅、調整してAに帰還し水圧を 同波数に変換する。出力信号はDのモジュール① で緩衝増幅して海底ケーブルに送り出す。ケーブ ルは±15 Vの直流電源とこの出力信号の伝送に 使用する。出力周波数と水梁トとの関係は

f(Hz) = 2775 + 141.8 D (m)

で IRIG 8, 9バンドを使用している.

図7に陸上変換部の基本回路を示す。伝送され てきた周波数信号はAの高入力インビーダンス増 幅器①のモジュールで受けられモジュール②のフ ィルターで信号周波数より低い電源ノイズ等を除 きBのシュミット・トリガーによって正弦波から バルスに成形されたあと、単安定マルチバイブレー ター (monostable multivibrator)で更に 高さ,幅が一定のバルスに変換される。単安定マ ルチバイブレーターの出力の直流分は一定時間内 のバルスの数,すなわち周波数に比例する。ただ し、単安定マルチバイブレータの出力は水深ん= 0のときにも零にならないから直流安定化電源 (AVR)とCのモジュール①,②によってん= 0 mで0 V, ん=10 mで10 Vの出力が得られ るように調整してある。

3. 二乗積分回路

このようにして得られた水圧変動Pおよび流速 変動vからから、ある一定時間の移動平均値P, \overline{v} 、およびそれぞれの分散

 $\sigma_p^2 = \langle (p-p)^2 \rangle, \sigma_v^2 = \langle (v-v)^2 \rangle$ を求める回路である、回路の基本図は図7にあわ せて示してある。まずD-1のモジュール①の低 域通過フィルターによって平均値を求めH-1の モジュール①の緩衝増幅器を通して出力を得る。

図8 平均値回路の応答特性

この平均値回路の応答特性を図8に示す。これは 直流電圧を加え定常状態に達してから入力を切っ たときの出力の応答を示すもので,ほぼ指数関数 的に減少し,立上り時間は10分前後である。

D-1のモジュール②は入力信号と平均値の差 を求めるためのものであり、この値はH-1の③ の緩衝増幅器を通して波浪の出力となる、出力電 E8 Vが水頭圧で1 mになっている。

これとパラレルにE-1のモジュール②にはいった信号は二乗されF-1の①で一定の時定数を 持った積分を行ない②で増幅調整して出力となる、 積分の時定数は2分,3分,5分の3段である。

各出力端子の出力インビーダンスは50 Q以下 であるが最大許容電流は5 mAに制限されている。

図9 二乗積分回路の応答特性(正弦波T=10s)

図9は二乗積分回路の応答テストの一部である. テストした入力は直流3 Vに0.1 Hz の正弦波を 乗せたもので、山から谷までの電圧差がそれぞれ 0.5、1.0、15 V の場合であって、積分時定数は 5分とした.立上り時間は10分前後である.図10 に検定の結果を示す.

いま,入力電圧を

$$x(V) = \frac{H}{2} \cos \sigma t + x_0$$

とすると、図7のD-1の①の出力は符号を反転 した平均値 $-x_0$ となり、これはH-1の①によ りいま一度符号を反転して出力 x_0 を得る。D-1の③では入力からこの平均値が差引かれ更にn倍に増幅された反転出力

$$x_1 = -n \frac{H}{2} \cos \sigma t$$

を得る、この出力H - 1の②によっていま1度符

号が反転され平均値を除いた波浪出力となる.E-1の②は二乗回路でその出力は

 $x_2 = 0.1 x_1^2$ となる、F-1の①は積分回路でその出力は $x_3 = -\frac{1}{T} \int_{t=T}^t x_2 dt$

$$= -0.1 \frac{1}{2\pi} (n\frac{H}{2})^2 \int_{\sigma_t - 2\pi}^{\sigma_t} \cos^2 x \, \mathrm{d} x$$

$$=-\frac{0.1}{2}(\frac{nH}{2})^2$$

となりF-1の②で最終段の増幅mをうけて符号 が反転し

 $y = 0.1 \, \frac{m}{2} \, (\frac{n \, H}{2})^2 \, (V^2)$

が出力電圧となる. 波浪観測用のAチャネルおよ び沿岸流観測用のBチャネルはn=8, m=2と 設定してあるから

 $y = 1.6H^2$ (V²) が設計出力となる.二乗回路の入力は±10 V と 制限されているが, 観測される最大波高はH=0.8hとみてよいからh=2 m τ 1.6 Vとなり, この ときの二乗回路入力は $n = 8 \tau \frac{n}{2} B = 6.4$ Vの程 度である. これに反し水粒子の速度は1節で述べ たように $u = 0.4 \sqrt{gh}$ にも達するので、岸に平 行な成分の振動流に対しては1 m/s が2 Vとな る信号検出器に対してn = 8としてよいが、増設 予定の岸に直角成分のチャネルに対しては信号検 出器の利得を1 m/s が2 Vとすると $n \leq 4$ とし なければならない。

二乗回路は温度の変化によって影響を受ける、 その影響は入力が小さいほど目立つかられを適当 に選んで入力の大きさを調整しなければならない。

4. 観測値の整理

図11は水圧と流速の平塚海岸における観測例で ある、図12はこの信号を二乗積分回路に通したと きの出力の例である、平均値出力に見られるよう

図11 波浪および粒子速度の観測例

に,設置水深は2~3.5 mで変化している. 汀線 からの距離は約150 mである.

一般に沿岸流の流速V,離岸流の流速Uおよび
 波による水のたい積(Wave set - up)の量は
 次式で与えられる.(岩田ら, 1970)

$$\frac{V^2}{gh} = \frac{r}{8K_f} \frac{\beta - (\frac{r^2}{8})^2 K_f \sin^2\theta}{1 + \frac{r^2}{8} (2 - \cos 2^{\theta})} \sin 2^{\theta} \quad (4)$$

$$U = -\frac{r^{3/2}}{8}\sqrt{gH_b} \quad \sin \theta \tag{5}$$

$$A\overline{\zeta} = \ell \frac{\beta + \frac{r^2}{8} K_f \frac{\sin^2 \theta}{2 - \cos 2 \theta}}{1 + \frac{\beta}{r^2 (2 - \cos 2 \theta)}} \qquad (6)$$

ただし, 座標軸および波の進入方向は図13の上端 に示してあるようにとる. H_b は砕波の波高で $r = H_b/h_b$ で0.78 とした. lは汀線から砕波点まで の距離で K_f は海底摩擦係数である. 図の13は(4) 式によって計算した計算値と観測実験値との比較 で, これらの値はPutnam (1949)らが行なった

(Putnam (1949)らの資料による。

室内実験と野外観測により得られたものである。 いま,波浪の周波数・方向スペクトルをS (σ, θ)とすると,水圧変動および粒子速度成分のパ ワスペクトルはそれぞれ、

$$p_{pp}(\sigma) = (\rho_{gK})^{2} \int_{-\pi}^{\pi} (\sigma, \theta) d\theta ,$$

$$P_{uu}(\sigma) = (\sigma K \operatorname{coth} kh)^{2} \int_{-\pi}^{\pi} \operatorname{in}^{2} \theta S(\sigma, \theta) d\theta ,$$

$$P_{uv}(\sigma) = (\sigma K \operatorname{coth} kh)^{2} \int_{-\pi}^{\pi} \operatorname{cos}^{2} \theta S(\sigma, \theta) d\theta .$$

また、速度の相互スペクトルは
$$p_{uv}(\sigma) = (\sigma K \operatorname{coth} kh)^2 \int_{-\pi}^{\frac{\pi}{2} \sin 2\theta} S(\sigma, \theta) d\theta$$
.

ただし

7

$$K = \frac{\cosh k (h + z)}{\cosh k h}$$
与えられる、分散および共分散は
$$\overline{u^2} = \int_0^\infty \mu_{uu}(\sigma) d\sigma ,$$
$$\overline{v^2} = \int_0^\infty p_{vv}(\sigma) d\sigma ,$$

$$\overline{uv} = \int_{0}^{\infty} p_{uv}(\sigma) \, \mathrm{d} \, \sigma \quad .$$

である、波浪の進行の主方向は、図13の座標では

$$\tan 2 \theta = \frac{2\overline{u}\overline{v}}{\overline{u^2} - \overline{u^2}}$$

となるから、流速の分散と共分散を測定すればよい、共分散の測定が困難な場合でも、方向スペクトルの幅が狭い場合は、上記のスペクトルの表現から近似的に

$$\cos 2 \theta = \frac{\overline{v^2 - u^2}}{\frac{v^2 + u^2}{v^2 + u^2}}$$
(7)

とすることができる。砕波帯近辺の残海波では, 特にスペクトルの高周波側を問題としないかぎり (7)式を使用して波向を決めても支障はないと思われる。

更に, 浅海岸を単一周期の波で代表させるとと ができるような状態では

$$\sqrt{\frac{\overline{v^2}}{p^2}} = \frac{\sigma_m}{\rho_g} \coth kh \cos \theta \tag{8}$$

となる. この単一周期の波として,風によって起きた沖波の極大周波数の波をとる. 風浪のスペクトルを-5乗則で近似すると(Volkov, 1968)

$$\frac{\sigma_m}{g} = \frac{\alpha}{(g\sqrt{\zeta^2})^{1/2}} , \quad \alpha = 0.231$$

が得られる。(8)式の近似の程度では

$$\overline{p^2} = (\rho_g K)^2 \overline{\zeta^2}$$
としてよい、したがって(8)式は、 $z = -h \tau$

$$\cos \theta = \frac{1}{\alpha} \tanh kh (\cosh kh)^{\frac{1}{2}} \left(\frac{\overline{v^2}}{g\sqrt{p_*^2}} \right)^{\frac{1}{2}},$$

$$\overline{p_*^2} = \frac{\overline{p^2}}{(\rho_g)^2}$$

となる. kh ≪1 ならば更に

$$\cos \theta = \frac{2\pi}{\alpha} \frac{h}{L} \left[\frac{\overline{v^2}}{g\sqrt{\overline{P_*^2}}} \right]^{\frac{1}{2}}$$
(9)

となるから、 v と P の 分散だけからでも、 主方向 θ の大体の推定をすることができよう、

今回の試験観測では、岸に直角方向の流速uの 測定信号検出器が故障し、更に二乗積分回路もく とuのみの2チャネルだけの未完成の状態であっ たので、やむをえず(9)式を使用して波向を推定し

た.計算はh/L=0.1として行なった.これはh=3mでT=6sの波を考察していることになる. このようにして求めた θ を使用し、(4)式による計算値と、観測値を比較したものが図14である.ただし、海底こう配 $\beta=0.02$ で $K_f=0.06$ とした. この K_f の値は Putnam らの自然砂による室内実験の結果得られた資料から(4)式によって求めた K_f の平均値0.0681を考慮して仮定した.

試験観測を行なった期間は昭和44年11月30日 から昭和45年2月7日までで、計器の設置場所 は平塚市虹ヶ浜の国立防災科学技術センター平塚 支所前面の砂浜海岸であった、設置水梁は平均潮 位下3mであって、観測期間中は有義波高が1m を越えることが少なかったために図14には観測点 で砕波しない波の資料まで含まれている。

5. おわりに

本稿の1節は浅田の原稿を2,3節は関本の原稿をもとにして岩田が全体をとりまとめたもので ある。

参考文献

Iwata, N. (1970): Wave breaking and longshore currents (to be published).

Putnam, J. A., W. H. Munk and M. A. Traylor (1949): The prediction of longshore currents. *Trans. Amer. Geophys. Un.*, **30**(3), 337-345.

Volkov, Yu. A. (1968): Analysis of the spectra of sea swell developing under the action of turbulent wind. *Izv. Acad. Sci. USSR, Atmospheric and Oceanic Physics,* 4(9), 555-564.