火山専用空中赤外映像装置の開発研究(第2報)

植原茂次*・熊谷貞治*・高橋 博**・高橋末雄***・ 幾志新吉****・矢崎 忍****・田中 厚+・北村慎一+ 国立防災科学技術センター

Developmental Study on New Airborne Multi-spectral Scanner System Specifically Oriented to Thermal Observation of Volcano (Second Report)

By

S. Uehara, T. Kumagai, H. Takahashi, M. Takahashi, S. Kishi and S. Yazaki

National Research Center for Disaster Prevention, Japan

A. Tanaka and S. Kitamura

FUJITSU LIMITED, Japan

Abstract

This report describes a developmental study on a new infrared detector which enables the MSS planned to detect area of high temperature on the surface of volcano body as mentioned in the previous report (NRCDP, Research Note, No.62, Developmental Study on New Airborne Multi-spectral Scanner system Specifically Oriented to Thermal Observation of Volcano, First Report, Oct. 1984).

The study includes design, trial manufacturing, durability experiments and evaluation of performances of the new infrared detectors made of an alloy (HgCdTe).

As the result, specified performances and durabilities for various stresses as well as establishment of manufacturing procedures were satisfactorily secured.

The main features of this study are as follows:

1. In order to detect high temperature effectively, the optimum spectral characteristics of sensitivity of the infrared detector over a range of 3-5 micron wavelength was designed by the analysis of combination ratio of constituent materials of the detector element. Namely, the mol ratio of CdTe in the alloy was decided to be in the range of 0.262-0.284 corresponding to the allowable of the peak response wavelength 4.5-5.5 micron.

*第3研究部, **所長, ***第2研究部, ****第4研究部, *富士通株式会社特機システム事業部技術部第三機器課

- 2. The results of first performance tests for four manufactured detectors satisfied fully the given specifications.
- 3. The durability experiment for the detectors includes three items such as damp heat cycle experiment, vibration experiment and long-term stability experiment. After the experiments, various parameters of detector performance were measured to evaluate durabilities. The parameter includes detectivity, responsivity, relative spectral sensitivity, maximum detectivity, spectral responsivity and so on. As the result, in the case of damp heat cycle experiment, some deterioration of detector performance appeared. However, it was evaluated that the deterioration was not so significant and would not appear in the ordinary operational case. In the other experiments, the significant deterioration did not appear.
- 4. The durability experiment for detector dewers includes impact experiment and atmospheric pressure experiment, and no significant problems did not appear.

From the results mentioned above, it was concluded that the new infrared detector was successfully developed its performance and manufacturing procedure.

次

まえがき	3
第Ⅳ編 火山専用空中赤外映像装置の高温用赤	
外検知器の設計・製作・試験	
 高温用赤外検知器の設計	3
1.1 設計の仕様	3
1.2 検知素子設計	4
1.2.1 検知波長帯域	4
1.2.2 最大波長感度(D [*] /a)	6
1.2.3 レスポンシビティ $(R_{\lambda \phi})$	6
1、3 検知器構造設計	7
1.4 ウインド設計	8
2. 高温用赤外検知器の試作	10
2.1 製作工程	10
2.2 試作検知器	12
 高温用赤外検知器の試験 	12
3.1 試験の目的	12
3.2 試験の仕様	13
3.3 試験の方法	15
3.3.1 試験実施方法	15
(1) 基本性能試験	15
(2) 温湿度サイクル試験	15
(3) 振動試験	15
(4) 長期安定性試験	17
(5) 衝撃試験	17
(6) 気圧試験	18

昌

3.3.2 評価項目測定法	• 19
 比検出能(D*) 	· 19
(2) レスポンシビティ(R)	· 19
(3) 相対分光感度(β_λ)	· 20
(4) 最大波長感度(D[*]_{λφ})	· 21
(5) 分光レスポンシビディ(R _{λo})…	· 21
(6) 暗抵抗(γ)の測定	· 21
(7) 液体窒素保持時間	· 22
(8) 振動雑音	· 22
(9) 入射赤外パワーP _L および比例定数	文
γの説明	· 22
3.4 試験結果	· 25
3.4.1 基本性能試験	· 25
3.4.2 温湿度サイクル試験	· 25
3.4.3 振動試験	· 31
3.4.4 長期安定性試験	• 31
3.4.5 衝撃試験	· 31
3.4.6 気圧試験	· 34
4. 評 価	· 34
4.1 基本性能試験	• 34
4.2 温湿度サイクル試験	· 38
4.3 振動試験	· 39
4.4 長期安定性試験	· 39
4.5 衝撃試験	· 40
4.6 気圧試験	• 40
5. まとめ	• 40

まえがき

本報告は、国立防災科学技術センター研究速報第62号火山専用空中赤外映像装置の開発研 究(第1報)に次ぐ、第2報として、上記装置の中心的課題である高温測定用赤外検知器の 設計、製造技術の確立、性能の確認等のための設計、試作、試験について取りまとめたもの である。

既存の航空機MSSは、常温域の観測を目的として、観測波長域8~13µm帯域の赤外検 知器を具備しているが、100℃をこえる火山噴気や、1000℃以上にもなる溶融したマグマ のような高温の観測に適した検知器は具備されていない。

高温部を精度良く測定するためには、黒体放射の分布および大気の吸収帯からみて、観測 波長帯域3~5 µmの高温用検知器の開発が必要である。この帯域の検知器としては、InSb の二元合金の検知器があるが、感度の波長特性が固定的である。これに対して、HgCdTeの 三元合金の検知器は、HgとCdの配合割合を適切に設計することにより、最大感度を所定の 波長域に合致させることができ、波長特性の選択性がある。

第1報の詳細設計では、上記の点を考慮して、HgCdTe検知器を用いることとして、その 期待性能を仮定して設計しており、この性能確保の可能性を検証し、同時に、実機用の高温 測定用検知器の設計、製造技術を確立するための研究を実施したものである。

本研究の実施は,第1報のまえがきにも記したように,下記メンバーで構成する火山専用 空中赤外映像装置に関する研究委員会の審査・検討の下に,富士通株式会社の協力を得て行 われた。

委員長,	専門家	5員	加茂	幸介	京都大	学防约	炎研究	式所教授,	桜島観測所所長
	專門家	委員	源田	秀三郎	千葉大	学名礼	誉教授	ž	
	專門教	委員	堤	捨男	京都工	芸繊維	准大学	七芸学部	教授
	專門家	委員	三輪	卓司	千葉大	学工	学部教	好授	
	職員		所長	(前第2	研究部	長);	高橋	博	
			第3	研究部	植原茂	次, f	熊谷貞	J治	
			第2	研究部	高橋未	雄			
			第4	研究部	幾志新	吉,学	天崎	忍	

◇第Ⅳ編─火山専用空中赤外映像装置の高温用赤外検知器の設計・製作・試験

1. 高温用赤外検知器の設計

1.1 設計の仕様

航空機搭載MSSの詳細設計で用いた高温用としての3~5 µm 帯検知器の期待性能を表

表 1.1 高温用赤外検知器仕様·

Table 1.1 Specification of infrared detector for high temperature measurement

$\overline{\ }$	項 目	任楼
1	検知波長奈	3~5 µm
2	冷却。虚度	77K(液体窒素冷却)
3	素 子 サ 1 ズ	150 µm × 150 µm
4	素材	Hg.Cd.Te
5	最大波長感度(D [*] ip) $2 \times 10^{10} \text{cm} \cdot \text{Hz}^{\frac{1}{2}} \text{W}^{-1}$ UL
6	分光シスポンシビティ(R ネp) 3×10 ³ VW ⁻¹ 以上
7	視 野(FoV)	50°
8	時 定 数	2 4 8 以下
9	樽 造	縦型デュア構造
10	液体 窒素保持時間	2時間以上

1.1 に仕様として示し、これを目標に設計を行う.

赤外線検知器の設計は、検知素子、検知器構造、ウインドの各部毎に行う、以下順次設計 内容を述べる。

1.2 検知素子設計

HgCdTe形赤外検知器の検知素子設計では、まず検知波長域の設計を行い、その上で最大 波長感度およびレスポンシビティの性能見積りを行い、要求性能に適合するか否かを確認す る.

1.2.1 検知波長帯域

(1) HgCdTe 結晶と波長特性

HgCdTe 結晶は、HgTe 結晶および CdTe 結晶を Hg_{1-x} Cd_xTe のごとく混合したもの で、検知カットオフ波長 λ_{e} (μ m)は、式(1.1)および式(1.2)に示すように、Hg_{1-x} Cd_xTe 結晶の組成(CdTe のモル比: x値)と温度から決まる結晶のエネルギーギャップ Eg(ev)により支配される.

$$\lambda_{e} (\mu \mathrm{m}) \simeq 1.24 / \mathrm{Eg} (\mathrm{ev}) \tag{1.1}$$

 $Eg(ev) \simeq 1.59 x - 0.25 + 5.233 \times 10^{-4} T (1 - 2.08 x) + 0.327 x^{3} (1.2)$

ここに、 λ_e はカットオフ波長(μ m)であり、ピーク応答波長 λ_p (μ m)とは実験的に次

の関係にあることが判っている.

$$\lambda_p \simeq \lambda_c - 1 \tag{1.3}$$

また*T*は素子冷却温度であり、本検知器では77Kとなる、式(1.1)~(1.3)より、 λ_p と x の関係は式(1.4)で示される.

$$\lambda_p (\mu_m) = \frac{1}{0.264 x^3 + 1.22 x - 0.17} - 1$$
 (1.4)

式(1.4)の $\lambda_p \ge x \ge 0$ 関係を図1.1に示す.

(2) 検知波長帯と最大感度波長

HgCdTe形赤外検知器の分光感度は、図1.2に示すように最大感度波長 λ_pより短波長側では緩慢に、長波長側では急激に低下する性質がある。従ってHgCdTe検知器では最大感

度波長 え。を検知波長帯の上限に設定する.

高温用検知器では、検知波長帯が3~5 μ m帯であるため、最大感度波長 λ_p の設計基準を5 μ mとした上、製造上のバラッキを考慮し、 λ_p に

$$4.5 \,\mu\mathrm{m} \leq \lambda_{\mathrm{p}} \leq 5.5 \,\mu\mathrm{m} \tag{1.5}$$

の許容範囲を与え、これによりCd Teのモル比 xを設計することにした.

(3) Cd Te のモル比の設計

(1.5)に示した λ_p の範囲に対応する Cd Te のモル比 α は図 1.1 から式(1.6) に示す範囲となる。

$$0,262 \leq x \leq 0.284 \tag{1.6}$$

1.2.2 最大波長感度(D^{*}₁)

最大波長感度 D^{*}₁は近似的に式(1.7)で与えられる.

$$D_{\lambda p}^{*} \simeq \frac{\eta}{2} \cdot \frac{\lambda_{p}}{h \cdot C_{0}} \left(\frac{n+p}{n \cdot p}\right)^{1/2} \left(\frac{\tau}{t}\right)^{1/2} \tag{1.7}$$

Cこに、η:量子効率 n:自由電子濃度
 h:プランク定数 p:正孔濃度
 C₀:真空中の光速 t:素子厚

またでは次式で与えられる.

$$\tau \simeq \frac{2 n_i^2 \tau_{Ai}}{n^2} \tag{1.8}$$

ここに、 n:: 真性キャリア濃度

 τ_{Ai} : 真性オージュ再結合機構によって制限された過剰キャリアの寿命である. 以上の計算式による見積の結果, $D_{\lambda p}^{*}$ は 2.5 × 10¹⁰ 以上の値が期待できることが判り, 設計仕様 2 × 10¹⁰ を満足する見通しを得ることができた.

1.2.3 レスポンシビティ($R_{\lambda p}$)

レスポンシビティ R_{λ_0} は,近似的に式(1.9)で与えられる.

$$R_{\lambda p} \simeq \eta \frac{\lambda_p}{h \cdot C_0} \cdot \frac{1}{A_d \cdot t} \cdot \frac{\tau}{n} V_0 = \eta \frac{\lambda}{h \cdot C_0} \cdot \frac{1}{A_d \cdot t} \cdot \frac{\tau}{n} (r_d \cdot J_0)^{1/2}$$
(1.9)

Cこに、 η : 量子効率 n : 自由電子濃度
 h : プランク定数 V₀:バイアス電圧
 C₀: 真空中の光速 r_d:素子抵抗
 A_d:素子面積 J₀:素子で発生するジュール熱
 t :素子厚 τ : 式(1.8)で与えられる

以上の計算式による見積の結果,レスポンシビティ R_{λ_p} は1×10⁴ V·W⁻¹ 以上の値が期待できることが判り,設計仕様である3×10³ V·W⁻¹ を十分に満たす見通しを得ることができた.

1.3 検知器構造設計

検知器の構造は,標準仕様縦形デュアを用いる. この仕様は,最近,特殊な状況下で,検 知器内部に生じた結露のため,真空度の劣化がまれに発生することが明らかとなったので, 結露の問題を解決した新しい構造に設計変更を行ったもので,今回の試作検知器は,この改 良構造を採用することとした. なお外観・寸法は従来のものと同一であるので,MSSの装 置側の設計は第1報に述べた詳細設計を変更する必要はない. 今回試作する検知器の構造を 図 1.3 に示す.

結露による真空度劣化と検知器構造の改良について、以下に説明する.

異常に高い湿度で運用し、湿気を検知器デュア内に吸い込んだ場合、湿気は露となり、液体窒素がなくなるとデュア底部(図1.4クーリングヘッド部)に氷結する、これが度重なると氷の体積が増して、その結果クーリングヘッドとガラスの接合部まで達する、この状態で液体窒素を入れた時、接合部のクーリングヘッド側は氷温度、ガラス側は窒素温度(77K)になるため、膨張率が異なり、接合部に異常なストレスが加わって亀裂が発生し、これにより真空度が劣化する場合があった。なおクーリングヘッドの材質はコバール、ガラスはコバールガラスを用いて熱膨張係数をほぼ等しくしているため、通常使用のごとく一様に窒素温度となっている場合上述の現象は発生しない。

以上の対策として、クーリングヘッド部の構造を見直し、図1.3 に示すように内部容量を 従来の0.4 cc から3 cc に変更し構造を改善したものである。

図1.4 従来検知器のクーリングヘッド部

Fig. 1.4 Structure of cooling head of existing infrared detector

1.4 ウインド設計

赤外検知器のウインド材は、材質により固有の分光透過特性を有するため、赤外入射パワーの損失があり、検知素子に効率よく赤外入射パワーを与えるという観点からは不要のものであるが、デュア内部を真空に保つため不可欠のものである。

従って、ここでは高温用赤外検知器の波長帯3~5μm を効率よく透過するウインド材に ついて検討する。

液体窒素冷却形赤外検知器のウインド材は、従来のものは検知波長帯が8~14 μ m である ため、図1.5 に示すように、この波長帯に最適な分光透過特性を有するゲルマニウムを用い ている、このゲルマニウムウインドでは、3~5 μ m帯域の分光透過率は4 μ m 付近にビー クをもつ分布をしているが、3~5 μ m 帯検知器の最大感度波長である5 μ m 付近、および 3 μ m 付近で透過率が下降しており、損失が大きい.

そこで, 3~5 μm 帯で比較的損失の少ないウインド材を検討した結果,図1.6 に示すご とく,3~5 μm 帯ではフラットで高い透過特性を有するサファイアを用いることとした.

火山専用空中赤外映像装置の開発研究(第2報)一植原・熊谷・高橋博・高橋末・幾志・矢崎・田中・北村

図1.6 サファイアの分光透過特性

Fig. 1.6 Spectral characteristics of transmissivity of saphire

2. 高温用赤外検知器の試作

2.1 製作工程

赤外検知器の製作工程は,図2.1 に示すように結晶製作工程,検知素子形成工程および検 知器製作工程の3段階がある.図2.2 に結晶製作工程,図2.3 に検知素子形成工程,図2.4 に検知器製作工程の詳細をそれぞれ示す.

検知器の内部を真空葬気しながら、ペー キングし、容器の脱ガスを行なう。排気 後そのまま真空封止する。

排気ベーキング

特性試験

検知器完成

検知器特性を測定して最終選別を行なう。

- 図2.4 検知器製作工程
- Fig. 2.4 Flow sheet of manufacturing process infrared detector

2.2 試作検知器

評価試験のため試作した4本の検知器の外観を図2.5および図2.6に示す.なお、同時に ダミー検知素子を取付けた同構造のデュアを4本試作した.

図 2.5 試作赤外検知器外観 Fig. 2.5 Outlook of infrared detector made on experimental basis

図 2.6 試作全赤外検知器外観 Fig. 2.6 Outlook of whole infrared detectors made on an experimental basis

3. 高温用赤外検知器の試験

3.1 試験の目的

本試験は,火山専用空中赤外映像装置のMSS部を実際に航空機に搭載した場合に,赤外 検知器に対して予想される各種ストレスをシミュレートして,高温用赤外検知器の電気性能 および機械性能を確認し、実機用検知器としての設計・製造技術を確立することを目的としている。

3.2 試験の仕様

本試験では、高温用赤外検知器4本、およびこれと同構造を有する検知器デュア(ダミー

素子付)を試作し、これらを試験内容に応じ使用し試験を行う. 表 3.1 に赤外検知器の試験 の仕様を、表 3.2 にデュアの試験の仕様を示す. また、これらの試験フローチャートを図 3. 1 および図 3.2 に示す.

\sum	試験項目	摘費	評価項目	供 気 サンブル教
1	基本性能試験	赤外镇知器裂作徒、贫	1) 比饺出能(D [*])	4本
		験前に基本要求性能を	2) レスポンシビティ(R)	
		満足するかどうか弦認	3) 相对分光感度	
		ナる。	4) 曼大波長志彦 (D ¹ λp)	
			5) 分光レスボンシビティ(R /p)	
			6) 研造抗 (r)	
			7) 液体窒素强持时间	
2	温·礋度	各種溫度·湿度条件下	1) 比读出能 (5*)	2 🕸
	サイクル 試験	における赤外検知器の	2」 レスポンシビティ(R)	
		性能劣化に対する耐性	3〕 柏刘分光感度	
		を試験する。	4)最大波長感度 (D/xp)	,
			5) 分光レスポンシビティ(R Jp)	
í I			6) 暗挺抗 (r)	
			7) 液体窒素保持時間	1
3	振動試験	赤外读知器が輸送中、	1) 比徵出能 (0*)	2本
		使用中に受ける振動に	2) レスポンシピティ (R)	
		よる電気的,機械的等	3) 相対分光感度	
		性に及ぼす影響かよび	4)最大孩员感度 (D [*] Ap)	
		耐久性能を試験する。	5) 分光 レスポンシビティ(R Jp)	
			6) 暗抵抗(r)	
			7) 液体窒素保持時間	
			8) 振動ノイズ	
4	長期安定性	赤外検知器を長期間	1) 比検出能(D [*])	2本
	友 験	(1000H以上) 寧邁	2) レスポンシビティ (R)	
		に放置した場合の性能	3)最大波美感度 (D*Ap)	
		の変化を試験する。	4) 分光レスポンシビティ(R Jp)	
			5) 暗抵抗 (r)	
			6) 液体窒素保持時間	

表 3.1 赤外検知器試験仕様

 Table 3.1
 Specification of experiment for infrared detector

\square	試験項目	摘要	辞 匝 項 目	供 試 サンブル数
1	衝撃試験	リークおよび破壊強度	1) 外 観	2本
		测定	2) 暗抵抗(r)	
			3) 液体窒素保持時間	
2	気圧試験	リークおよび破壊強度	1) 外 鏡	2本
		測定	2) 暗抵抗(r)	
			3) 液体窒素保持時間	

表 3.2 デュアの試験仕様

.

Table 3.2 Specification of experiment for detector dewer

Fig. 3.1 Flow sheet of experiments for infrared detectors

図3.2 デュア試験フロー Fig. 3.2 Flow sheet of experiments for detector dewers

3.3 試験の方法

- 3.3.1 試験実施方法
- (1) 基本性能試験
 - 1)供試サンプル:赤外検知器4本(全数)
 - ii) 試験方法:表 3.1,1 に示す評価項目について,室温で測定する。
- (2) 温湿度サイクル試験
 - i) 関連規格: JIS C 7021 試験方法A5
 - 前)供試サンプル:赤外検知器2本(基本性能測定後のもの)
 - Ⅲ)試験装置:下記温湿度が安定に得られる恒温槽を用いる。
 - (a) 温度 -10℃±2℃~+60℃±2℃
 - (b) 最高湿度 90%~98%
 - Ⅳ)試験方法:供試品2本を取付治具に装着して槽内の中央部に設置し、図3.3に示す温 湿度サイクルを6サイクル実施し、表3.1,2に示した評価項目の測定を行う。
 - V) 検査タイミング:次のとおり温湿度サイクルの前後実施する.
 - (a) 初期測定……温室度サイクル実施前,常温で実施
 - (b) 最終測定……6サイクル目のdが終了後24時間常温に放置してから実施する.
 - VI) 測定条件:検知器にバイアス電流を要する測定項目においては、基本性能測定で比検 出能D* が最大となったバイアス電流を印加する。
- (3) 振動試験
 - i) 関連規格: JIS C 0911 ⅢC 1種

- ii)供試サンプル:赤外検知器2本(基本性能測定後のもの)
- iii) 試験装置:以下の振動が得られる振動試験器を用いる.
- (a) 振動 55 Hz ± 5% 固定, 複振幅 83 μm ± 10% (0.5G)
- (b) 振動 10~55 Hz ± 5% 掃引, 複振幅 0.3 mm ± 10%
- iv) 試験方法:振動試験は一定振動を与えた場合,検知器出力に現れる振動雑音試験,および各種振動を与えた場合の耐久性(性能変化)試験の2種の試験を実施する.何れの場合も取付治具により,供試品2本を強固に振動試験器に取付けて実施する.
 - (a) 振動雑音試験……赤外検知器に液体窒素を注入し、振動周波数 55 Hz, 複振幅 83 µmの振動を赤外検知器の縦方向(Z方向)に一定に印加して、振動有および無の状態での検知器雑音を測定する.
 - (b) 耐久性試験……赤外検知器に次の振動をX,Y,Zの3方向に印加した後、性能測 定を行う.この場合は液体窒素は注入しない.

◦振動掃引範囲	10 ~ 55 Hz
o 振動掃引変化	3 Hz / 分以上
o複振幅	0.3 mm
◦試験時間	1 方向につき 30分

- ∨) 測定項目:表3.1,3の評価項目を測定する.
- Vi) 測定条件:検知器にバイアス電流を要する測定項目においては、基本性能測定において、比検出能 D* が最大となったバイアス電流を印加する。
- (4) 長期安定性試験
 - i) 関連規格: JIS C 5036
 - ii) 供試サンプル:赤外検知器2本(温湿度サイクル終了後のもの)
 - iii) 試験方法:赤外検知器2本を取付台に置き,室温中に放置する、
 - iv) 測定項目:表 3.1,4 に示す評価項目を測定する.
 - V) 測定条件:図3.4に示す測定タイミングで、液体窒素を注入し、約10分後に測定を開始する、また検知器にバイアス電流を要する測定項目においては、基本性能測定において、比検出能 D* が最大となったバイアス電流を印加する。

図3.4 長期安定性試験性能測定タイミングと測定項目

- Fig. 3.4 Timings and parameters for performance test in the long-term stability experiment of infrared detectors
- (5) 衝撃試験
 - i) 関連規格: JIS C 5036
 - ii)供試サンプル:検知器デュア 2本
 - Ⅲ)試験装置:表3.3に示す衝撃が印加できる衝撃試験器を用いる。
 - Ⅳ) 試験方法:表3.3に示す試験1および試験2を行う、赤外検知器は取付治具により振動試験器に固定し、表3.3に示す条件でX,Y,Zの3方向に各々3回衝撃を印加する. 試験順序は試験1から試験2とする.

表 3.3 衝擊条件 Table 3.3 Condition of impact experiment for infrared detector

	最大加速度 A	作用時間 D	(注2) 速度変化 V i	備	考
試験 1	294 m/s ² (30G相当)±20%	18ms±15%	3.37m∕S	JIS C	5026
試験 2	490m/s ² (50C相当)±20%	11mS±15%	3.43 m/S.	JIS C	5026

注2)速度変化 Vi =
$$\frac{2AD}{\pi}$$
 (m/S)

表3.4 気圧条件

Table 3.4 Condition of atmospheric pressure experiment for infrared detector

	E 力 高 度	絶対圧力	傭	考
試験1	2438m(+8000 ft)	564.4 mm H9	JIS W 7002	
試験 2	6096m(+20000ft)	349.3 mm H9	JIS W 7002	

∨) 測定項目:表3.2,1に示す評価項目を測定する.

vi) 測定タイミング:衝撃印加前,試験1終了後,試験2終了後の3回行う.

- (6) 気圧試験
 - () 関連規格: JIS W 7002
 - jj) 供試サンプル:検知器デュア 2本
 - ⅲ) 試験装置:表3.4 に示す気圧が印加できる気圧試験槽を用いる.
 - Ⅳ) 試験方法:表 3.4 の試験1の条件で試験した後,引続き15秒以内に試験2の圧力に減 圧する. 試験1.2の保持時間は,各々24時間とし,周囲室温で実施する.
 - ∨) 測定項目:表3.2,2に示す評価項目を測定する.

vi) 測定タイミング:減圧前、試験1終了後、試験2終了後の3回測定する。

- 3.3.2 評価項目測定方法
- 比検出能(D^{*})
 - |) 測定系統:図3.5に示す.

$$D^* (500 \text{ K}, 1 \text{ kHz}, 1 \text{ Hz}) = \frac{V_s/V_n}{P_L} \cdot A^{1/2} \cdot \Delta f^{1/2} (\text{ cm Hz}^{1/2} \text{ W}^{-1}) (3.1)$$

ここに、 V。: 検知器信号出力電圧(V)

 V_n : 検知器雑音電圧(V)

- A : 検知器素子面積 = 0.015 × 0.015 (cm²)
- Δf: 周波数帯域幅=100 (Hz)
- P_L: 500 Kの黒体より得られる入射赤外パワー= 2.25×10⁻⁹(W)

{詳細は(9)項参照}

(2) レスポンシビティ(R)

- i) 測定系統:図3.5 に示す。
- ii) 測定方法:(1)の比検出能 D*と同一測定方法により検知器出力信号 V。を測定し,次 式に代入してRを計算する.

$$R (500 \text{ K}, 1 \text{ kHz}) = \frac{V_s}{P_L} (\text{V}/\text{W})$$
 (3.2)

ここに、 V。: 検知器信号出力電圧(V)

 P_L : 500 Kの黒体より得られる入射赤外パワー = 2.25 × 10⁻⁹ (W) (3) 相対分光感度(β_λ)

- 1) 測定系統:図3.6 に示す.
- ii) 測定方法:検知器出力信号のうち、チョッピング周波数成分のみの電圧を測定するためにロックインアンプを用いる、分光器により入射赤外波長入を変えていき、そのときのロックインアンプからの出力電圧Vs2を順次記録する、次に光路を切りかえて波長特性の平坦な熱検知器を用いて光源の波長特性のリファレンスをとる、このとき、ロックインアンプ出力Vs/2を順次記録する、以上の測定値から相対分光感度特性、 *kD*^{*}₂(1 kHz)は次式により求められる。

$$\kappa D_{\lambda}^{*} (1 \text{ kHz}) = V_{s\lambda} / V_{s'\lambda}$$
(3.3)

従って、最大感度波長 λ_{p} における感度が1となるよう規準化した相対分光感度 β_{λ}

図3.6 分光感度の測定系

- 20 -

(1 kHz)は次式により求められる.

$$\beta_{\lambda} = \frac{\kappa D_{\lambda}^{*}}{\kappa D_{\lambda p}^{*}} = \frac{V_{s\lambda} / V_{s'\lambda}}{V_{s\lambda p} / V_{s'\lambda p}}$$
(3.4)

ここに、 $\kappa D_{\lambda_p}^*$ は式 (3.3)から求められた κD_{λ}^* のピーク値であり、 λ_p は最大感度波長である.

- (4) 最大波長感度(D^{*}_{λp})
 - () 測定系統:図3.5 および図3.6 による.
 - ii) 測定方法:比検出能 D^{*}(500K,1kHz,1Hz)を用いて,次式により算出する。

$$D_{\lambda p}^* = \gamma D^* \tag{3.5}$$

ここに、γは比例定数であり、次式により得られる {詳細は(9)項参照 }.

$$\gamma = \frac{\int_0^\infty W_2 \, d_\lambda}{\int_0^\infty \beta_\lambda W_\lambda \, d_\lambda} \tag{3.6}$$

ここに, W₁: 500 Kの黒体の分光エミッタンス

 β_i :相対分光感度

- (5) 分光レスポンシビティ (R_{λ_n})
 - 1) 測定系統:図3.6 および図3.7 による.
 - ii) 測定方法:レスポンシビティ(R)を用いて,次式により算出する.

$$R_{\lambda n} = \gamma R$$

(3,7)

ここに、7は(3.6)により得られる比例定数

(6) 暗抵抗(r)の測定

(曲) 抵抗計は、測定時の電流が1mA以下のものを使用する。

図3.7 暗抵抗測定系

Fig. 3.7 Measurement system for dark resistance of infrared detector

- 測定系統:図3.7に示す。
- (1) 測定方法:図3.7の測定系において、検知器に液体窒素を注入冷却し、10分後抵抗値 を抵抗計で測定する。
- (7) 液体窒素保持時間
 - 測定系統:図3.8に示す。
 - ii) 測定方法:図3.8の測定系において、暗抵抗をレコーダにより記録して測定し、液体
 窒素冷却後,抵抗計の暗抵抗の指示値が検知器固有の値になった時間を t1 とし、窒素
 蒸発により抵抗値が低下し始めた時間を t2 として次式により液体窒素保持時間 tH を
 求める.

 $t_H = t_2 - t_1 \tag{(3.8)}$

- (8) 振動雑音
 - i) 測定系統:図3.9に示す.
 - ii) 測定方法:図3.9の測定系において、加振しない場合の雑音 An および加振した場合の雑音 Bn を測定し、次式により振動による雑音増加率Nを測定する。

$$N = B_n / A_n \tag{3.9}$$

- (9) 入射赤外パワーPLおよび比例常数アの説明
 - () 入射赤外パワ- P_L について

信号源の黒体から放射された赤外光が検知素子に入射するときのパワー $P_i(W)$ は、 次のように求められる.

条件は次のとおりとする.

- a. 信号黒体の温度:*T_B*(K)
- b. 環境温度(含チョッパ): T_a (K)
- c. 環境の放射率(含チョッパ): ε = 1
- d. 信号源黒体の開口面積: S_B (cm²) (= πr_B^2)
- e. 検出素子面積: S_D (cm^2)
- f. 信号源と検出素子面の距離:L(cm) $L \gg S_{R}^{1/2}, S_{D}^{1/2}$

以上の条件のとき,

黒体エミッタンス

$$W = \sigma \left(T_B^4 - T_a^4 \right) \qquad (W \, \text{cm}^{-2}) \tag{3.10}$$

ここに、 σ : ステファン・ボルツマン定数 = 5.6687 × 10⁻¹² (W cm⁻² K⁻¹)

火山専用空中赤外映像装置の開発研究(第2報)一植原・熊谷・高橋崎・高橋村・幾志・矢崎・田中・北村

注1) 抵抗計は、制定時の電流が1mA以下のものを使用する。

注2) レコーダ出力の例

図 3.8 液体窒素保持時間 Fig. 3.8 Retention time of liquid nitrogen poured into infrared detector

(振動状況)
 (振動状況)

Fig. 3.9 Measurement system for vibration noise of infrared detector

黒体放射パワー

$$P_{e} = WS_{B} = \sigma \left(T_{B}^{4} - T_{a}^{4} \right) S_{B} \quad (W)$$
(3.11)

黒体イラジアンス

$$H = W S_B / \pi L^2 = \sigma \left(T_B^4 - T_a^4 \right) S_B / \pi L^2 \quad (W \, \text{cm}^{-2}) \tag{3.12}$$

となり,以上から検出素子入射パワー Piは,

$$P_{i} = HS_{D} = \sigma \left(T_{B}^{4} - T_{a}^{4} \right) S_{B}S_{D} / \pi L^{2} \quad (W)$$
(3.10)

で与えられる.

従って, $T_B = 500$ K, $T_a = 295$ K (22°C), $S_B = 0.196$ cm² ($r_B = 0.25$ cm), $S_D = 2.25 \times 10^{-4}$ cm² (d = 0.015 cm), L = 25 cm

のとき,それぞれ

$$\begin{split} W &= 5.6697 \times 10^{-2} \ (\ 500^{\ 4} - 295^{\ 4}) = 0.311 \qquad (\ W \ cm^{-2}) \\ P_{e} &= 0.311 \times 0.196 = 6.10 \times 10^{-2} \qquad (W) \\ H &= 6.10 \times 10^{-2} / \pi \ (25)^{2} = 3.11 \times 10^{-5} \qquad (\ W \ cm^{-2}) \\ P_{i} &= 3.11 \times 10^{-5} \cdot 2.25 \times 10^{-4} = 7.0 \times 10^{-9} \qquad (W) \end{split}$$

となる.

一方, チョッパのスリットとプレート幅が 1:1 で, 黒体の開口径(0.5 cm ϕ) と同じにした場合の基本波の実効値は、全パワーの 0.321 倍となる(測定系で信号電圧 V_s はウェーブアナライザによって基本波成分のみを計測する).

従って、実効イラジアンス H_L は、 $H_L = 0.321 H = 10 \times 10^{-6}$ (W cm⁻²) となり、各種検知器の測定における H_L は通常この値となる、このとき、実効検知素子 入射パワー P_L は、

 $P_L = 0.321 \ P_i = 2.25 \times 10^{-9} \quad (W)$

となる.

ii) 比例定数rについて

最大波長感度 $D_{\lambda p}^*$ と分光感度 D_{λ}^* との関係は、相対分光感度 β_{λ} を導入して次式により与えられる.

 $D_{\lambda}^{*} = \beta_{\lambda} D_{\lambda p}^{*} \tag{3.14}$

上式から,

$$D^* \int_0^\infty W_\lambda d\lambda = \int_0^\infty D^*_\lambda W_\lambda d\lambda = D^*_{\lambda p} \int_0^\infty \beta_\lambda W_\lambda d\lambda \qquad (3.15)$$

となり、その結果 $D_{\lambda p}^*$ と D^* との比 r は次式により与えられる.

$$\gamma = \frac{D_{\lambda p}^{*}}{D^{*}} = \frac{\int_{0}^{\infty} W_{\lambda} d\lambda}{\int_{0}^{\infty} \beta_{\lambda} W_{\lambda} d\lambda}$$
(3.16)

となり,式(3.6)が得られる.

また、式(3.1)、(3.2)より、以上の式は $D^* \in R$ に、 $D_{\lambda p}^* \in R_{\lambda p}$ に置換しても成立することが明らかである、よって、

$$\gamma = \frac{D_{\lambda p}^{\star}}{D^{\star}} = \frac{R_{\lambda p}}{R} \tag{3.17}$$

となる.

3.4 試験結果

3.4.1 基本性能試驗

基本性能試験は,試作した赤外検知器(4本)に実施するもので,表1.1に示した高温用 赤外検知器仕様に含まれる性能のほか,次の性能項目を測定した。

- 1) 比検出能(D^{*})
- 2) レスポンシビティ(R)
- 3) 暗抵抗(r)

比検出能(D^*)およびレスポンシビティ(R)は、最大波長感度($D_{\lambda p}^*$)および分光レス ポンシビティ($R_{\lambda p}$)が最大感度波長 λ_p における感度および応答であるのに対し、温度500 Kの黒体から得られた赤外パワーを検知素子に入射して得た感度および応答である。これは 測定条件が検知器によらず一定(500K黒体)であるところから、検知器性能比較に有効で あるため、各種環境負荷試験の指標データとして測定を行った。

また暗抵抗は,素子結晶の組成により決定されるものであるが,これは冷却状態により変化する性質があり、そのためデュアの環境負荷試験の指標データとして測定を行った.表3.5 および図 3.10,図 3.11,図 3.12 に基本性能試験結果を示す.なお、4 本の赤外検知器の分類は形名によって行うものとし、各々MC1-1-150-A-PH1~PH4 と命名しデータに付すことにした.

- また, 図 3.13 ~ 15 に性能試験状況および測定系の外観を示す。

3.4.2 温湿度サイクル試験

温湿度サイクル試験では、赤外検知器2本(PH1, PH2)を用い、表3.1,2 に示す性能 項目の温湿度サイクル負荷による性能変化を測定した。

なお,上記性能項目中1)~6)は検知素子の電気性能の耐性を試験するものであり, 6), 7)はデュアの構造的な耐性を試験することを目的とする、

				······	実 注	1 値	
	項目	規格	単 位	MC1-0150-A - PH1	MC1-0150-A - PH2	MC1-0150-A - PH 3	MC1-0150-A - PH4
j	比 検 出 能 (D*)	_	cm · Hz ^{1/2} · W ⁻¹	7.3 × 10 ⁹	1.1 × 10 ¹⁰	7.8×10 ⁹	7.7×10 ⁹
2	レスポンシビテイ (R)	_	V • W ⁻¹	7.3×10 ³	1.2×10 ⁴	3.3×10 ³	5.8×10 ³
3	相対分光感度(\$;)	有効 3~5 µm帯		X 3,10 (a)	🔀 3,10(Ъ)	(X) 3.10(c)	[X] 3.10[d)
4	最大波艮感度(D [*] ₂)	2×10 ¹⁰ 以上	$\operatorname{cm} \cdot \operatorname{Hz}^{1/2} \cdot \operatorname{W}^{-1}$	2.9×10 ¹⁰	4.2×10 ¹⁰	3.1×10 ¹⁰	3. 1 × 10 ¹⁰
5	分光レスポンシビティ(R _{えp})	3×10 ³ 以上	V·W ⁻¹	2.9×10 ⁴	4.3×10 ⁴	1.3×10 ⁴	2.3×10 ⁴
6	暗抵抗(*)	_	Ω	79.9	79.9	63.9	82.7
7	液体窒素保持時間	2.0以上	Hrs	8.0 (58.1.11)	8,17 (58, 1, 11)	8.2 (58.1.11)	8.25 (58.1.11)
8	最大感度波長(λ _p)	4.5~5.5	μm	5.0	5.1	4.8	5.1
9	時 定 数(*)	2以下	μs	0.7	0.9	0.7	0.7
10		_	mA	7 ([X] 3.11 (a))	9 ([%]3.11;bl)	4 ([X] 3.11(c))	3 (🕅 3.11(d))
11	素 子 寸 法(d)	150×150	μm^2	149 × 150	149×150	150×150	150×150
12	視 野 (F _{0k})	50	deg	49.8	49.8	49.8	49.8
13	構造・寸法	縦形デュア構造	mm	判定良(図3.12)	判定良(図3.12)	判定良(図3.12)	判定良(図3.12)

表 3.5 基本性能試験結果 Table 3.5 Results of basic performance test for infrared detectors

注) D^{*}, R, D^{*}_{λp}, R_{λp} は液体窒素(77 K)冷却時, 各検知器の J₆ における値とする

図 3.10 (a), (b), (c), (d) 相対分光感度 Fig. 3.10 Relative spectral sensitivities of infrared detectors

-27-

図 3.13 性能試験状況 Fig. 3.13 Outlook of performance test of infrared detector

図 3.14 波長感度測定系 Fig. 3.14 Measurement system for spectral sensitivity

of infrared detector

- 図 3.15 黒体感度測定系
- Fig. 3.15 Measurement system for sensitivity of infrared detector using blackbody radiation

表 3.6, 図 3.16 に試験結果を示す. また, 図 3.17 ~ 18 に使用した恒温槽および検知器セ ッティング状況を示す.

					試 験	結	巣	
	ці II	単位		PH1			PH 2	
			А•ій	B・後	C · 変化 (B-A)	A · 前	B・後	C · 変化 (B-A)
1	比 検 出 能 (D*)	cm · Hz ^{1, 2} · W ⁻¹	7.3×10 ⁹	9.9×10 ⁹	2.6×10 ⁹ (+35.6%)	1.1×10 ¹⁰	0.6×10 ¹⁰	-0.5×10 ¹⁰ (-45%)
2	レスポンシビティ(R)	$V \cdot W^{-1}$	5.7×10 ³	3.7×10 ³	-2.2×10^{3} (-37.3%)	1.2×10 ⁴	0.5×10 ⁴	-0.7×10 ⁴ (-58%)
3	相対分光感度(β))		[X] 3.16 a	同左		🕱 3.16(b)	同花	
4	版大波技感度(D [*] ,2P)	cm Hz ¹⁻² W ⁻¹	2.9×10 ¹⁰	3.9×10 ¹⁰	1.0×10 ¹⁰ (+35%)	4.2×10 ¹⁰	2.3×10 ¹⁰	-1.9×10 ¹⁰ (-45%)
5	分光レスポンシビティ(R _{えp})	$V \cdot W^{-1}$	2.9×10 ⁴	1.5×10 ⁴	-1.4×10 ⁴ (-4.8%)	4.3×10 ⁴	1.9×10 ⁴	-2.4×10 ⁴ (-55.8%)
6	暗 抵 抗 (r)	Ω	79.9	73, 1	6.8 (-8.5%)	63.2	59,7	- 35 (- 5.5%)
7	液体窒素保持時間	н	8.0	8.0	0	8.2	8.0	-0.2
	バイアス電流	n A ar	1~5に対して 7	间左		1~5に対して 9	[ii] <i>F</i> .	
	試験 11 時		0代和58年1月	17日9時215)~	-221117時20分	昭和58年17	17 19 時21分~	-22日17時20分

表3.6 温湿度サイクル試験結果

Table 3.6 Results of damp heat cycle experiment for infrared detectors

Fig. 3.16 Changes of relative spectral sensitivities of infrared detectors between before and after the damp heat cycle experiment

国立防災科学技術センター研究速報 第63号 1984年10月

図 3.17 恒 温 槽 Fig. 3.17 Outlook of damp heat chamber

図 3.18 検知器セッティング状況 Fig. 3.18 Outlook of detector setting

表 3.7 振動雑音(PH 3, PH 4) Table 3.7 Vibration noise of infrared detectors (PH1, PH2)

供試検知器	非加振時雑音	加振時雑音	増 加 率
РН3	1 0 mVp-p	1 3 mVp - p	1.3倍
РН 4	1 0 mVp-p	1 5 mVp-p	1.5 倍

3.4.3 振動試験

振動試験では,赤外検知器2本(PH3, PH4)を用い,振動負荷による検知器雑音の測 定および,表3.1,3の項目について,その性能変化を測定した。

振動雑音測定の結果を表 3.7 に示す. また雑音の波形写真を図 3.19 に示す. この(a) - 1, 2 は、検知器 PH3 の非加振および加振時の前置増幅出力雑音波形であり、(b) - 1,2 は PH 4 のそれを示している.

振動による性能変化の測定結果を表 3.8, 図 3.20 に示す. また図 3.21, 図 3.22 に振動試 験器外観および検知器マウント状況を示す.

3.4.4 長期安定性試験

長期安定性試験では、温湿度サイクル試験終了後の赤外検知器2本(PH1, PH2)を用い、室温に放置して表3.1,4に示す評価項目について性能変化を測定した。

この試験は8週間(1344時間)にわたり、2週間おきに、計5回測定を行った。その結果 を表 3.9 に示す。

3.4.5 衝撃試験

(a)-1 非加振時業者 (PH3) X:5mS/div,Y:10mV/div

(D)-1. 非加趣時雑音(PR4) X:5mS/div,Y:10mV/d)v

図 3.19 (a)-1,2,(b)-1,2 非加振時および加振時の雑音波形

Fig. 3.19 Noise wave modes of infrared detectors at non-vibrated and vibrated states

表 3.8 振動試験結果

					试 験	結	巣	
	項目	1 単 位		PH 3			PH 4	
			A、前	日・後	C 変化 (B-A)	A・前	B・後	C・⊈化 (B−A)
1	比検出能(の*)	cm Hz ^{1/2} W ⁻¹	7.8×10 ⁹	7.5×10 ⁹	-0.3×10 ⁹ (-3.8%)	7.7×10 ⁹	8.0×10 ⁹	$+0.3 \times 10^{9}$ (+3.9%)
2	レスポンシビティ(R)	V · W ^{−1}	3.3×10 ⁻³	3.4 × 10 ⁻³	+0.1×10 ³ (+3.0%)	5.8×10 ³	6.0×10 ⁻³	+0.2×)0 ³ (+3,4%)
3	相対分光感度(β ₁)		🔀 3.20 (a)	데 쇼		🕅 3.20ть)	hij <i>l</i> e	
4	最大波長感度(D [*] _{2p})	cm·Hz ^{1·2} ·W ⁻¹	3.1 × 10 ¹⁰	3.0×10 ¹⁰	-0.1×10 ¹⁰ (~3.2%)	3. 1 × 10 ¹⁰	3.2 × 10 ⁻¹⁰	+0.1×10 ¹⁰ (+3.2%)
5	分光レスホンシビティ(R _{ip})	V · W · '	1.3×10 ⁴	1.4×10 ⁺	+0.1×10 ⁴ (+7.7%)	2.3×10 ⁴	2.4×10 ⁴	+0.1×10 ⁴ (+4,3%)
6	晤抵抗(*)	. Ω	63.9	63.5	-0.4 (-0.6%)	82.7	82.7	0
7	液体窒素保持時間	H	8.2	8.3	+0.1	8.25	8,20	- 0.05
	バイアス啓流	mΑ	1-5に対して 4	lii) 75	1	1~5に対して 3	- 問 左	
	武験日時		HF0584F 2 172511				解 和58年2月25日	1

図 3.20 (a), (b)相対分光感度の変化

- 図 3.21 振動試験器 Fig. 3.21 Outlook of vibration experiment apparatus
 - 図 3.22 検知器マウント状況
 - Fig. 3.22 Outlook of infrared detector mounting on vibration experiment apparatus

表 3.9 長期安定性試験結果

Table 3.9 Results of long-term stability experiment for infrared detectors

				(注) 1	回目測定デー	タは温湿度サイ	(クル負荷後の	データである。	
/		156 11			測	定	結	果	
1	_	4 日	基本性能	A - 1回日	B・2回日	C · 3回目	D • 4回目	E・5回日	F · 変化 (E-A)
檢		検 査 日 時	S 58, 1, 11	S 58, 1, 24	S 58.2.7	S 58.2.21	S 58.3.7	S 58.3.21	
器		時間経過		0 H	336 H	672 H	1008 H	1344 H	
	1	比検出能 (cm·Hz ^{1/2} ·W ⁻¹)	7.3×10^{9}	9.9×10^{-9}	10.0×10^{9}	10.2×10^{9}	10.0×10^{9}	10.1×10^{9}	0.2×10 ⁹
	2	レスポンシビティ $\begin{pmatrix} R \\ (V \cdot W^{-1}) \end{pmatrix}$	$5.9\!\times\!10^{3}$	3.7×10^{-3}	$3.8\!\times\!10^{3}$	3.8×10^{3}	3.8×10 ³	3.9×10 ³	0.2×10 ³
PH 1	3	最大波長感度 $D^*_{\lambda p}$ (cm・Hz ^{1/2} ・W ⁻¹)	2.9×10^{10}	3.9×10 ¹⁰	3.9×10 ¹⁰	4.0×10^{10}	3.9×10^{10}	4.0×10 ¹⁰	0.1×10^{10}
	4	分光レスポンシビティ (R λp (V·W ⁻¹)	2.9×10^{4}	1.5×10^{4}	$1.5\!\times\!10^{4}$	1.5×10^{4}	1.5×10 ⁴	1.5×10^{-4}	0
	5	暗抵抗 [*] (Ω)	79.9	73.1	73.9	73.7	73.2	73.4	0.3
	6	液体窒素保持時間 (日)	8:0	8.0	7.8	8.0	8.2	8.0	0
	1	比検出能 D^* (cm·Hz ^{1/2} ·W ⁻¹)	1.1×10^{10}	6.1×10 ⁹	6.3×10 ⁹	6.4×10 ⁹	6.2×10 ⁹	6.2×10 ⁹	0.1×10 ⁹
	2	レスポンシビティ R (V・W ⁻¹)	1.2×10^{4}	5.0×10 ³	5.1×10 ³	5.2×10 ³	5.2×10 ³	5.3×10 ³	0.3×10^{3}
PH2	3	最大波長感度 $D_{\lambda p}^{*}$ (cm·Hz ^{1/2} ·W ⁻¹)	4.2×10^{10}	2.3×10^{10}	2.4×10^{10}	2.4×10 ¹⁰	2.3×10 ¹⁰	2.3×10 ¹⁰	0
	4	分光レスポンシビティ $\binom{R_{\lambda p}}{(V \cdot W^{-1})}$	4.3×10 ⁴	1.9×10 ⁴	1.9×10^{-4}	2.0×10^{4}	2.0×10 ⁴	2.0×10 ⁴	0.1×10 ⁴
	5	暗抵抗 ⁷ (Ω)	63.2	59.7	60.8	59.7	60.2	60.3	0.6
	6	液体窒素保持時間 (H)	8.17	8.01	7.9	8.0	8.1	8.1	0.09

バイアス電流は、1~4項に対し、PH1で7mA、PH2で9mAである。

衝撃試験では、赤外検知器とは別に試作した検知器と同じ構造のデュア(ダミー検知素子 付)4本のうち2本(X-3, X-4)を用い、30Gおよび50Gの2種の衝撃印加後、表3.2、 1の評価項目の測定を行った、この内、暗抵抗は冷却温度に依存する性質に注目し、衝撃に よる検知素子のマウント部からの脱落の有無を確認する目的で実施したものである。また、 液体窒素保持時間は、デュアのリークの有無確認のため実施したものである。

試験の結果を表 3.10 に示す. また図 3.23 にはデュアに実際印加された衝撃パルスの波形 を示す. また,図 3.24 に衝撃試験器とデュアのマウントの状況を示す.

3.4.6 気圧試験

気圧試験では、検知器と同構造のデュア(ダミー検知素子付き)2本(X-1, X-2)を用い、高度2438mおよび6096m相当の2種の気圧を印加し、表3.2, 2の評価項目の測定を行った。

試験結果を表 3.11 に示す. また図 3.25, 図 3.26 に気圧試験槽およびデュアのセッテイン グ状況を示す.

4. 評価

4.1 基本性能試験

試作した4本の検知器(MC1-0150-A-PH1~4)の試験結果は、3.4.1に示した通り であり、これから、はじめに設計目標とした各性能項目を全て満たすことがわかり、基本性 能としては十分確保できたと評価できる。

			â	\$ 験	結	平	
	│		X - 3			X - 4	
		A・前	注1) B・後1	注2) C ・後 2	A・前	注1) B・後1	注2) C・後2
1	外観	異常なし	異常なし	異常なし	異常なし	異常なし	異常なし
2	暗抵抗(77K)	235 ohm	232 ohm	231 ohm	5.8 ohm	5.8 ohm	6.1 ohm
3	液体窒素保持時間	7.58 hrs	7.62 hrs	7.57 hrs	8.01 hrs	7.98 hrs	8.0 hrs
	検査日時	昭和58年2	2月22日9時	~23日17時	[司 左	
<u> </u>	温 度		16.5 ℃		1	司 左	
	湿度		53%		[司左	

表 3.10 衝撃試験結果 Table 3.10 Results of impact experiment for infrared detectors

注1) 30G相当衝擊,注2) 50G相当衝擊

供試デュア X-3

357	1.555		Ê.E.		1.50	or at	5.9	C.S.	12
4	20	217.77	ne.	1419		X	K SY	1.7 ¹ 7.1	
1.4	-		reta.	.	1				
124		1.00	7		χĘ	心族		r.ä. 1	
10°/10 200	- (х. 1. т. х.	122	5.	6	- Nex		
1					11.90 11.11		474.) 		
ġ.			an di ta						

(X 方向 衝撃)

(Y 方向衛撃)

供試デュア X-3

(X方向)衝撃)

an Fu	急於	1	ду»,	23	њ¢	18. 19	3.9	÷0.	
	ζ.ξ	9. jv 7 v		e c	2007 - 7,2 74 - 7,2	62	er, ic.,	5	
6. ^{1.1} .1	Ŷ.	8.E			清湯	1			
			$\mathbf{C}_{\mathbf{r}_{2}^{\prime}}^{\prime \mathbf{t}_{2}^{\prime}}\mathbf{Y}^{\prime}$	-	Q. 1	靐	1		
) And S	े	i, iç	7	542	557	7.7	- 5	1957 B	
\mathbb{R}^{2}			<u>.</u>			Ł	7		T
			, Ţ		i.	i.	2 7 - A 4 2	i.	-
1	÷.,	8 S	-G.	2.5	-	P3>	8.¥	125	織

(Y 方向衝撃)

194

5.3

6

(乙方向衛撃)

(a) - 1

30 G相当 X : 5 ms / divY : 10 G/div

(2 方向 衝撃)

(a) - 2

50 G相当 X : 2.5 ms / div Y: 20 G/div

供 試 デ ュ 7 X - 4

Sein's	Ť.	2355 î. 19 - 27							
	課 業		3. S			S (
-,0		4 ×		÷.		赵 章	4 *	i san	
				2	数 :	資料	\$\$.)?	89. 19	
. See	25	ir N	37 - F		151		7 5	53¥-	
22	il Sec.		<u>з</u> г			<u>.</u>	<u>.</u>		烈
<u>a</u> 4		4			11-21 1-1-1-1 1-1-1-1-1-1-1-1-1-1-1-1-1-	3			6 B
1 ²⁶⁻²	1. 1.	<u>}</u> ^*			2.5			135	臺灣

(X 方向 衡 撃)

供試デュア X-4

(X 方 向 衡 掌)

	91. H		e tradici	574	-(2-)	- W	鑇
	20	28 F.S	/ ×5*		题	Э£	
				-		\mathcal{Q}_{rr}^{5}	
1978 1 989	17	<u>الأج</u>			(Stri	諦	
1993 - Carto	87 B				18. 19	鄮	
18: C.E.	1. 1.	(d) (d)	1. A.		, 1 5	a	1
		5 S .		1.4	2	1 5	Ň
the Same		er ex	影			家	18 18

(Y方向衝撃)

514 -			e Per Jie F					23	i Seite
	in the second		1	10 %	and a	÷.,			4
Ξ.x	3.00	45	514	3E 5	¥.,	14	44S	23	繌
1				T		ΪĒ.			
÷7		20	39	3				影	20
- 1- -			τ. Έλη	<u>N</u>				74	3.
2.54	5 j		÷.Y				10.2		
恣	1	ALC: ALC:		8 A	11	ί			

(Y方向衛撃)

			the second s	
10 A	1.6	1	Star. Sant	
	Cha Par			
		<u> </u>		
18. R. P. P.			1.00	S. 19
1947 (S. 16)		100	a saat daga	100
in is with			「た」」注意	100
	66 8			54 83
200 A		5 A 12		2.02

(Z 方向衝撃)

30 G相当 X:5 ms/div Y:10 G/div

(Z 方向 衡 季)

(b)-2

50 G相当 X: 2.5 ms/div Y: 20 G/div

図 3.23 (b)-1,2 衝撃パルス波形 Fig. 3.23 Pulse wave modes of impact experiment

図 3.24 衝撃試験器とデュアのマウント状況 Fig. 3.24 Outlook of impact apparatus and dewer mounting

表 3.11 気圧試験結果 Table 3.11 Results of atmospheric pressure experiment for infrared detectors

						and and a second	式 験	結	果		
		测空话日				X - 1		X - 2			
	測 定 塤 日				A ・前	注1) B・後1	注2) C・後2	A・前	注1) B・後1	注2) C・後2	
1	外			観	異常なし	異常なし	異常なし	異常なし	異常なし	異常なし	
2	暗		抵	抗	1600 ohm	1600 ohm	1630 ohm	33.2 ohm	33.0 ohm	32.9 ohm	
3	液	体窒	素保持	寺時間	8.03 hrs	8.00 hrs	8.01 hrs	8.00 hrs	8.11 hrs	8.08 hrs	
_	検	査	В	時	昭和58年2	2月22日9時	~25日9時	1	司 左		
	温			度		21 °C			同 左		
_	湿度			度		49%			同左		

注1) 2,438 m (8,000 ft)相当気圧

注 2) 6,096 m (20,000 ft)相当気圧

図 3.25 気圧試験槽 Fig. 3.25 Atmospheric pressure experiment chamber

図 3.26 デュアのセッティング 状況

Fig. 3.26 Outlook of dewer setting on atmospheric pressure experiment apparatus

4.2 温湿度サイクル試験

2本の検知器(PH1, PH2)の試験結果は3.4.2 に示した通りである. これらから, D^* , R, $D_{\lambda p}^*$, $R_{\lambda p}$ および r に性能変化が生ずることがわかり, その性能変化率を表 4.1 に集約 して示す.

	PH 1	PH2
D*	+35.6%	- 4 5 %
R	- 3 7.3 %	- 5 8 %
D [*] lp	+ 3 5 %	- 4 5 %
Rıp	-43%	- 5 5.8 %
r	- 8.5 %	- 5.5 %

表4.1 温湿度サイクル試験による基本性能に 対する性能変化率

 Table 4.1
 Change rates of basic performance of infrared detectors between before and after the damp heat cycle experiment
 表 4.1 から検知器 PH1 では、 D^* および $D_{\lambda p}^*$ が増加し、Rおよび $R_{\lambda p}$ が低下している. 一方検知器 PH2 では、 D^* および $D_{\lambda p}^*$ も低下しており、それらの性能変化傾向は PH1 と 逆である、しかし、PH2 の D^* 、 $D_{\lambda p}^*$ の低下率は、R、 $R_{\lambda p}$ の低下率より小さいところか ら、 D^* 、 $D_{\lambda p}^*$ 、R および $R_{\lambda p}$ の算出の根拠となる検知器信号出力 V_s および検知器雑音出 力 V_n を考察すれば、式(3.1)、(3.2)より、 D^* 、 $D_{\lambda p}^* \propto V_s/V_n$ 、R、 $R_{\lambda p} \propto V_s$ となる 関係にあり、従って検知器出力信号 V_s は PH1、PH2 とも低下し、かつ検知器雑音信号 V_n も PH1、PH2とも低下したことによるものであり、また V_n の低下は PH1 に比べ PH1 の 方が大であったことがわかる.

この検知器信号出力の低下傾向は、これまでの実績から検知器のベーキングによる性能変 化傾向に類似している.以上から本試験の場合、検知器を非冷却状況で最高60℃の温度環境 に長時間置いた結果、ベーキングと同様な作用を検知素子に与えたと判断される.

通常の場合,赤外線検知器は冷却(77K)して使用し,また,保存温度もこのような高温 になることは考えられないため,以上のような大幅な性能変化は生じないものと思われる。 また,若干の感度変化は、赤外検知器を用いた映像装置の運用実績から,基準黒体を用いた 定期温度校正により十分カバーできると思われる。

4.3 振動試験

振動試験は、3.4.3 に示したように、振動雑音の測定と耐久性試験を2本のデュア(PH 3, PH4)を用いて行った。

振動雑音は、図 3.19に示すように,主に振動周期の雑音が本来の雑音に重畳されて現われ たが、その増加率は PH3 では 1.3 倍、 PH4 では 1.5 倍であった.

装置設計ではこの値を2倍まで許容する設計を行っているため、この程度の雑音増加率は 何れの検知器とも装置性能には大きな影響を与えないと考えられる。

また、振動試験による性能変化は表 3.8 に示されるごとく、測定誤差の範囲とみられ、従って所定の振動に耐え得るものと判断される。

4.4 長期安定性試験

長期安定性試験は、3.4.4 に示したように、2本の検知器(PH1, PH2)を用い1000時 間以上室温に放置し性能変化を測定した。

結果は表 3.9 に示したが,各性能項目の変化は測定誤差の範囲と考えられ,従って,室温 環境においては長期安定性能は実用上問題ないと思われる。

国立防災科学技術センター研究速報 第63号 1984年10月

4.5 衝撃試験

衝撃試験は、3.4.5 に示したように、2本のデュア(X-3, X-4)を用いて実施した. 試験結果は、表3.10 に示した如く、外観に異常は生ぜず、また暗抵抗、液体窒素保持時間 も測定誤差の範囲と考えられる。これらから、デュアのソーク、破損、検知素子の脱落等、 構造上の問題はないことがわかった。

以上から、今回採用したデュア構造は、所定の衝撃に十分耐え得るものと判断できる.

4.6 気圧試験

気圧試験は3.4.6に示したように、2本のデュア(X-1, X-2)を用い実施した。

試験結果は表3.11に示したように、外観に異常は生ぜず、また暗抵抗、液体窒素保持時間 も測定誤差の範囲と考えられる。これらから、デュアのソーク、破損、検知素子の脱落等、 構造上の問題はないことがわかった。

以上から今回採用したデュア構造は、所定の気圧に耐え得るものと判断できる.

5. まとめ

以上報告したように、火山専用空中赤外映像装置の高温用赤外検知器の設計,試作,試験 を行って評価を行い,各種ストレスのシミュレートにより電気性能および機械性能の確認を 行った.

その結果,上記検知器の設計および製作プロセスに問題はないことが判明した.

以上から、今回の設計,製作,試験により、火山専用空中赤外映像装置の実機用検知器としての設計,製造技術を確立することができ,所期目的の達成をなし得たと考えられる.

(1984年7月6日 原稿受理)