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Abstract

Wide-angle refl ection data often show remarkable refl ections from the deep crust. In order to obtain new images of 
crustal inhomogeneity beneath the southwest Japan arc, I propose an improved mapping method designed for sparse
wide-angle refl ection data. The method, an improved form of the Common Scatter-Point (CSP) stacking method, has the
advantages of both the Common Mid-Point (CMP) and CSP stacking methods, which means that it can add a migration
effect to the CMP method, and has less of the ghost curves that results from the CSP method. When applied to two
sets of wide-angle reflection data (the 1988 Kawachinagano-Kiwa profile and the 1989 Fujihashi-Kamigori profile),
the method provided clear images of the subducting Philippine Sea plate and the island-arc’s lower crust. The main
results are as follows: (1) Intra-plate seismic activity is concentrated within the oceanic mantle, which suggests that the
oceanic mantle may be subject to dehydration embrittlement; and (2) The lower crust beneath the southwest Japan arc
has strong inhomogeneity, with a wavelength ranging from several to a dozen kilometers, which may result from crustal
reconstruction due to igneous activity that has occurred since the Cretaceous.

Key words : Common Scatter-Point (CSP) stacking method, Wide-angle refl ection, The 1988 Kawachinagano-Kiwa 
profi le, The 1989 Fujihashi-Kamigori profi le, The Philippine Sea plate
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Fig. 1.1 Example of the record section of the refraction survey 

the 1989 Fujihashi-Kamigori profi le  conducted by the 
Research Group for Explosion Seismology RGES . The 
reduction velocity is 6km/sec. Wide-angle refl ections from 
the crustal lower part are identifi ed in the area enclosed by 
the trapezoid.



177

2

Moho

2.
2.1

Lithoprobe
Lithoprobe

Cook et al., 1992

1995 2.1

1/30 1/500

1.5km

150-200km

CMP

2

2.2 CMP
2.2.1 CMP

2.1 a
2

CMP Common 
MidPoint

2.1 b

NMO NMO

CMP

CMP
P S

multiple NMO

n S/N n1/2

CMP

2.1 Lithoprobe Southern Canadian Cordellera
Cook et al., 1992

1995
Table 2.1 Specification comparison between a continental deep 

seismic survey of the Southern Canadian Cordellera 
Cook et al., 1992  from the Lithoprobe project, and 

a wide-angle reflection/refraction survey from the 
1989 Fujihashi-Kamigori profile Research Group for 
Explosion Seismology, 1995 .
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Fig. 2.2 Scheme of the Common Scatter-Point CSP stacking 
method. Amplitudes are allocated on the isochrone of the 
scatter traveltime left . The scatter point is emphasized 
after the allocated amplitudes are stacked right .

2.1 CMP a 2 b NMO
c NMO d CMP

Fig. 2.1 Scheme of the Common Mid-Point CMP  stacking method. a  Simple model with a single
horizontal refl ector triangles and squares indicate shot points and receivers, respectively b Before
NMO correction c After NMO correction d CMP stacking after NMO correction.
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Table 2.2 Comparison between Common Mid-Point CMP  and 

Common Scatter-Point CSP stacking methods.

2.3 I

Fig. 2.3 Scheme of the improved mapping method. Amplitudes are
allocated on the isochrone of the scatter traveltime using a
weighting function.
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Fig. 2.5 Geometry of the angles θ  andθ φ . θ is an angle between θ
the normal line and the bisector of the scatter angle at the 
scatter point P. φ is an angle between the horizontal line φ
and the tangent at P.

2.6
2

Fig. 2.6 Scheme of making a scatter traveltime map. Maps of 
traveltime from a shot point upper left and from a
receiver point lower left . A scatter traveltime map is
made from a summation of both the traveltime maps

right .
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Fig. 2.4 Schematic diagrams of the control factor’s effect. The 
improved mapping method comes close to the CMP 
stacking method as the control factor increases, and it 
comes close to the CSP stacking method as the control 
factor decreases.
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Fig. 3.1 Stretching effect caused by NMO correction Yilmaz, 

2001 . a A synthetic CMP gather before NMO 
correction, b  after NMO correction without stretch 
limits, c  after muting using a stretch upper limit of 150 
percent, and d  after muting using a stretch upper limit 
of 200 percent.
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Fig. 3.2 Schematic diagrams of the stretching effect caused by the
improved mapping method. Scatter traveltime maps show
the cases in which the source-receiver offsets were 70km

left and 140km right . The case of 140km has an
isochrone contour with a wider interval.
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Fig. 3.3 Synthetic horizontal multi-layered model.
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Fig. 3.4 Synthetic seismograms reduced by a velocity of 6km/sec.
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Fig. 3.5 Effects of stretch upper limits in the improved mapping method. The stretch upper limits are 150, 170, 180, 190, 200, 210, and 
250% as well as no limit.
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Fig. 3.6 Traveltime of head waves calculated using a finite 
difference method. In case of a large offset, head waves 
propagating in the lower layer at a high velocity are faster 
than direct waves.

3.7 4

Fig. 3.7 Calculation of traveltime map without head waves in a 
four-horizontal-layered model.
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Fig. 3.8 Scatter traveltime map for a case with a source-receiver 
offset of 70km with left , and without right  head 
waves.
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Fig. 3.9 Difference between scatter traveltime maps with and 
without head waves for an offset of 70km.
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Fig. 3.10 Scatter traveltime map for a case with a source-receiver 
offset of 140km with left , and without head waves 

right .
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Fig. 3.11 Difference between scatter traveltime maps with and 
without head waves for an offset of 140km.
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Fig. 3.13 Seismic sections applied with the improved mapping 
method using a stretch upper limit of 190% and a control 
factor of 10. With left  and without right  head waves.
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3.15 70km 140km 

θ
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right .
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Fig. 3.12 Seismic sections applied with the improved mapping 

method using no stretch upper limit and a control factor 
of 1. With left  and without right  head waves.



187

60km 3 2km 45
90km× 50km synthetic

3.17 2
9 control factor
F

1, 2.5, 5, 10, 20, 40, 80, 160, 320 9
3.18 2

F=1FF
F=320FF CMP

F=1FF
2 10° 20°

F=320FF CMP

1
20° 18°

10°
control factor

F=20FF
2

F=80FF
control factor

20°

F=2.5FF 20°
F=5FF 20°

F=10FF 18°
control factor 

18° 10°
10°

control factor

3 control factor

F=1FF
F=320FF

3
F=80FF

F

3.5 control factor

3.4
control factor

9
synthetic

0.15sec
3.19

synthetic 3.20

3.16 2
10° 20°

Fig. 3.16 Synthetic velocity model. The two left dipping refl ectors 
have dip angles of 10° and 20°, respectively.
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Fig. 3.17 Example of synthetic wave forms without noise. The 
shot point is located at an offset of 20km. The reduction 
velocity is 6km/sec.
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Fig. 3.19 Example of synthetic wave forms with noise. The shot 

point is located at an offset of 20km. The reduction 
velocity is 6km/sec.
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Fig. 3.18 Effect of the control factor of the improved mapping method, which is applied to synthetic data without noise. The control 
factor range is from 1 to 320. A white dashed line indicates a refl ector of the synthetic velocity model.
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Fig. 3.20 Effect of the control factor of the improved mapping method, which is applied to synthetic data with noise. The control factor 
range is from 1 to 320. A white dashed line indicates a refl ector of the velocity model used.
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Fig. 4.3 Application of deconvolution. Before left and after 

right  deconvolution using an operator length of 0.6sec 
and a prediction lag of 0.07 sec.
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4
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Fig. 4.5 Location map of the 1988 Kawachinagano-Kiwa profi le. 
Stars and open circles indicate shot and receiver points, 
respectively. Hypocenters of micro-earthquakes from 
May 1995 to April 2001 Nakamura et al., 1997 are 
superposed.

4.6 1988 S-1 5-8Hz
6km/sec reduce

Fig. 4.6 Record section S-1  for the 1988 Kawachinagano-Kiwa
profile using a bandpass filter of 5-8Hz. The reduction
velocity is 6km/sec.

4.7 1988 S-6 5-8Hz
6km/sec reduce

Fig. 4.7 Record section S-6  for the 1988 Kawachinagano-Kiwa 
profile using a bandpass filter of 5-8Hz. The reduction 
velocity is 6km/sec.

4.8 1988
8km

Fig. 4.8 Upper crustal velocity model for the 1988 Kawachinagano-
Kiwa profi le after traveltime inversion.

4.9 1988

Fig. 4.9 Model parameters used for the traveltime inversion of the 
upper crustal velocity model for the 1988 Kawachinagano-
Kiwa profile. The boundary and velocity nodes are 
indicated by squares and circles, respectively.
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Table 4.1 Resolutions and standard deviations of the model 
parameters used to invert the upper crustal velocity 
model for the 1988 Kawachinagano-Kiwa profi le.

4.10 1988

Fig. 4.10 Ray path diagram used for the inversion of upper the 
crustal velocity model for the 1988 Kawachinagano-
Kiwa profi le.

4.11 1988

Fig. 4.11 Lower crustal velocity model for the 1988 Kawachinagano-
Kiwa profi le. The velocity of the lower crust is assumed 
to refer to the 1989 Fujihashi-Kamigori this study  and 
Kurayoshi-Hanafusa Yoshii et al., 1974 profi les.
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Fig. 4.12 Seismic sections of the 1988 Kawachinagano-Kiwa profi le. The range of the control factor FF  is from 1 upper left  to 320 
lower right .
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Fig. 4.13 Seismic section of the 1988 Kawachinagano-
Kiwa profi le and its interpretation F=40FF .

4.14 1991 a
2 b c

Fig. 4.14 Comparison between this study and the previous study. Cross-sections for this study left and for Yoshii 
1991 right . a  Undetectable double refl ectors, b  undetectable multi refl ectors, c  undetectable 

change of the dip angle.
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1985 1 1994 12
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Fig. 4.15 Location map of the 1989 Fujihashi-Kamigori profile. Stars and open 

circles indicate shot and receiver points, respectively. Hypocenters of 
micro-earthquakes from May 1995 to April 2001 Nakamura et al., 1997
are superposed.
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Fig. 4.16 Record section S-1  of the 1989 Fujihashi-Kamigori 
profile using a bandpass filter of 3-8Hz. The reduction 
velocity is 6km/sec.
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Fig. 4.17 Record section S-4  of the 1989 Fujihashi-Kamigori 
profile using a bandpass filter of 3-8Hz. The reduction 
velocity is 6km/sec.

4.18 1989
8km

Fig. 4.18 Upper crustal velocity model for the 1989 Fujihashi-
Kamigori profi le after traveltime inversion.

4.19 1989

Fig. 4.19 Model parameters used for traveltime inversion of the
upper crustal velocity model for the 1989 Fujihashi-
Kamigori profi le. The boundary and velocity nodes are
indicated by squares and circles, respectively.
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4.2 1989

Table 4.2 Resolutions and standard deviations of the model
parameters used to invert the upper crustal velocity
model for the 1989 Fujihashi-Kamigori profi le.

4.20 1989

Fig. 4.20 Ray path diagram used for the inversion of the upper 
crustal velocity model for the 1989 Fujihashi-Kamigori
profi le.

4.21 1989 -

Fig. 4.21 Lower crustal velocity model for the 1989 Fujihashi-
Kamigori profi le after traveltime inversion.

4.22 1989

Fig. 4.22 Model parameters used for the traveltime inversion of 
the lower crustal velocity model for the 1989 Fujihashi-
Kamigori profi le. The boundary and velocity nodes are
indicated by squares and circles, respectively.

4.3 1989

Table 4.3 Resolutions and standard deviations of the model
parameters used to invert the lower crustal velocity
model for the 1989 Fujihashi-Kamigori profi le.
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Fig. 4.24 Seismic sections of the 1989 Fujihashi-Kamigori profi le. The range of the control factor FF  is from 1 upper left  to 320 
lower right .

4.23 1989

Fig. 4.23 Ray path diagram used for the inversion of the 
lower crustal velocity model for the 1989 Fujihashi-
Kamigori profi le.

4.25 1989
F=40FF

Fig. 4.25 Seismic section of the 1989 Fujihashi-Kamigori profi le 
and its interpretation F=40FF .
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Fig. 5.1 Location map of the seismic survey line conducted in

1999 solid line Kurashimo et al., 2002 . The line
intersects with the Nankai trough, in the eastern part of 
Shikoku Island and the Chugoku District.

5.2

2002
Fig. 5.2 Geometry of the subducting Philippine Sea plate and the

crustal velocity structure Kurashimo et al., 2002 . The
hypocenters are also superimposed.
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Fig. 5.3 Location map of the seismic line off of the Kii Peninsula 
in 1994 the easternmost north-south line in the figure

Nishisaka, 1997 .

5.4
1997

Fig.5.4 Geometry of the subducting Philippine Sea plate and 
the crustal velocity structure off of the Kii Peninsula 

Nishisaka, 1997 .

5.5 1988

Fig. 5.5 Seismic section for the 1988 Kawachinagano-Kiwa profi le 
superimposed with hypocenters, which were provided 
by the Earthquake Observation Center of the Earthquake 
Research Institute at the University of Tokyo.
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Fig. 5.6 Errors of the hypocenters shown in Fig. 5.5.

5.7
1997

Fig. 5.7 Velocity structure used for hypocentral determination 
leftmost Nakamura et al., 1997 .

5.8 1988

Fig. 5.8 Seismic section for the 1988 Kawachinagano-Kiwa 
profi le based on the same velocity structure used for the 
hypocentral determination.
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Fig. 5.9 Thermal structure of the subducting Philippine Sea plate 

from off of Shikoku Island Peacock and Wang, 1999 .
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Fig. 5.10 Schematic section of accretionary prism Matsuda and 
Isozaki, 1991 .
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