
Report of the National Research Institute for Earth Science and Disaster Resilience, No. 88 ; December, 2023 

－1－

1. Introduction
Real-time monitoring is vital for hazard assessment 

during an ongoing volcanic eruption. Component analysis 
of volcanic ash particles should be included in real-time 
monitoring because the component fraction provides 
direct evidence of eruption processes determining the 
possible hazard 1)-4) and does not require complex methods 
or preparation to characterize the erupted products. 
However, component analysis by manual classification 
under a stereoscopic microscope is difficult to incorporate 
into real-time monitoring, because it is time-consuming 
and the classification criteria are subjective. For manual 
classification, it takes approximately half a day to classify 
the ash particles in a representative sample. As a result, the 

time required for analysis can lag behind the changes in 
eruptive activity. The criteria for manual classification can 
also vary with time, particularly when multiple operators 
are involved in the classification during long-term activity. 
Therefore, further research is needed to develop methods for 
the component analysis of volcanic ash particles so that it can 
be used as a continuous real-time monitoring tool.

A convolutional neural network (CNN) is a deep-learning 
algorithm for objective image recognition5)-7), which may be 
applicable to component analysis of volcanic ash particles8). 
A CNN contains multiple layers that convolve the pixel 
intensities, sends the convoluted signals to the next layer, 
and then finally outputs the probabilities that the object being 
evaluated falls into each classification category. A CNN for 
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Abstract

Real-time monitoring is vital for timely hazard evaluation during ongoing volcanic eruptions. The component fractions 
of volcanic ash particles have been used as a proxy for eruption style. However, continuous real-time monitoring of the 
components in airfall ash has not yet been realized, because manual classification is time-consuming and the criteria for 
the classification are subjective. In this study, we used a convolutional neural network (CNN) method to classify volcanic 
ash particles from the 2014–2016 activity at Aso volcano, Japan, using microphotographs taken as red–green–blue (RGB) 
images that capture the ash surface microstructures. We trained the CNN algorithm using 512 images of five categories of 
ash particles which were based on color, vesicularity, glassiness, alteration and crystal fragments from two ash samples. 
Component analysis was then undertaken on six ash samples using the trained CNN. The component fractions obtained 
by the trained CNN are consistent with those from a manual classification based on observations with a stereoscopic 
microscope. The trained CNN successfully classified 518 particles in the microphotographs within 3 min. Thus, we 
conclude that component analysis by the CNN method using RGB microphotographs could be applied to quasi-real-time 
monitoring of an ongoing eruption.
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image recognition is trained using labeled images and by 
minimizing the classification error rate. Shoji et al. (2018)8) 
used a CNN to classify volcanic ash particles based on their 
shape, which is related to eruption style and fragmentation 
process9)-14), and demonstrated that a CNN can classify 
types of juvenile ash particles in typical basaltic eruptions, 
based on particle shapes observed in 2D monochromatic 
microphotographs taken under transparent light. However, 
surface microstructures such as glass texture and ash particle 
color were not included in their classification.

Surface microstructure is a fundamental descriptive 
parameter of a volcanic ash particle15)-17) and provides 
insights into the eruption style1), 18)-22). Ash particles that 
originate from newly ascending magma are expected to have 
a glassy appearance due to rapid quenching during magma 
fragmentation, whereas particles that originate from stagnant 
magma or recycled material will not be glassy due to the 
micro- and nano-scale crystallization of groundmass glass in 
the shallow conduit1), 23). In addition, the color of ash samples 
changes with eruption style22) and the involvement of 
hydrothermally altered material20), and may be an indicator 
of a phreatic eruption2), 18).

In this study, we applied the CNN method to the 
classification of volcanic ash from the 2014–2016 activity 
at Aso volcano, Japan, using colored red–green–blue 
microphotographs. We show that this method provides a 
robust classification of volcanic ash particles that could be 
utilized in real-time monitoring of an ongoing eruption.

2.  Sample
This study is based on six ash samples from the 2014–2016 

activity of Nakadake first crater, Aso volcano, Japan 
(Table 1). Two ash samples collected on 15 December 2014 
and 15 December 2016 (Aso-03 and 05, respectively) were 
used to obtain images for training the CNN, because these 
samples contain typical particles to describe characteristics 
of volcanic ash from the activity at Aso volcano. All six 
samples were used for classification using the trained CNN 
and manual classification. All samples were collected within 
a few days of deposition. The ash samples were washed in 
distilled water in an ultrasonic cleaner for 30 s to remove 
very fine particles which disturb observation of the surface 
microstructure, and dried in an oven at 80°C for 24 h. The 
dried samples were sieved to obtain ash particles of 250–500 
μm in size. This size range is abundant in all samples used in 
this study and is large enough to allow microstructures to be 
observed.

The ash particles in the samples were classified into 
the following five categories (Fig. 1): black, glassy, and 
vesicular (BGV); black, glassy, and dense (BGD); black 
and non-glassy (BN); altered particle (AL); and plagioclase 

(PL). This classification is based on the phases present, glass 
features, color, and presence of vesicles. BGV and BGD 
have glassy surfaces with and without vesicles, respectively. 
BGV and BGD are interpreted to be the juvenile material of 
the eruptions18), 23). BN particles have a non-glassy surface, 
black to gray color, originated from old lava or recycled 
material1), 23), and are interpreted to be lithic particles. AL 
particles show evidence of alteration and a wide range of 
colors, including gray, white, red, and yellow18), 23). PL are 
plagioclase crystals that may have a thin rim of groundmass. 
Mafic minerals were not considered because they are only 
present in small amounts (<5 vol.%).

Table 1 Samples.

3.  Methods
3.1  CNN training

This study used RAPID machine learning software 
developed by NEC Advanced Analytics. RAPID is software 
for deep-learning based on a CNN, which contains input, 
convolutional, normalized, max pooling, fully connected, 
softmax, and output layers (Fig. 2). An appropriate network 
is selected according to the dimensional size of input image. 
The network is automatically configured and the particle 
image is convolved. The number of network layers and 
kernel size are automatically determined, but the number of 
channels can be varied; the best classification accuracy for 
the current dataset was obtained when the number of channels 
was set to 16. The detailed algorithm for the determination 
of number of network layers can not be shown here, since 
the RAPID is commercial software. The CNN in the RAPID 
software is trained using labeled images and by minimizing 
the error classification rate. The error rate is defined as the 
ratio of the number of errors to the number of training data 
in an epoch of training. A decreasing error rate represents 
progress in the training. We set the number of training epochs 
to 60, but manually stopped the training when the error rate 
was sufficiently converged to avoid overfitting the dataset.

Microphotographs of ash particles which is composed of 
only one of the five basal categories (BGV, BGD, BN, AL, 
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and PL) were taken under a stereoscopic microscope to use in 
the CNN training and classification (Fig. 1). Representative 
particles of the five category of ash particle from two samples 
(Aso-03 and 05) were manually placed on a light blue 
colored plastic plate such that the particles did not overlap, 
and then microphotographs were taken with a digital camera 
(Canon EOS Kiss X71) attached to a stereoscopic microscope 
(Nikon SMZ800) under incident light. We carefully select the 
representative particle for the five categories by observing 
the all faces of the particles and determined that for 
representative particle when the all faces have characteristics 
of same category. The microphotographs were three-channel 
RGB images in JPEG format. The microphotographs were 
1280 × 1028 pixels in size with a resolution of 5 μm/pixel, 

which is sufficient to observe the microstructure of the ash 
particles. Thirty to fifty particles were captured in each 
microphotograph. An image of each particle was extracted 
from the microphotographs by thresholding of pixel intensity 
and resized to 256 × 256 pixels in RAPID software.

The extracted particle images were used as labeled images 
for training of the CNN using RAPID software. A total 
of 120 extracted particle images were picked for the each 
category (BGV, BGD, BN, AL, and PL). As pre-processing 
for training, the number of images was increased by image 
processing, such that the brightness and saturation of the 
images were varied by ±20%–40% and the images were tilted 
by 90°, 180°, and 270°. As a result of the image processing, 
the 512 particle images yielded a total of 2560 particle 
images for training.

Fig. 1 Five categories used in classification of the ash parti-
cles. (a) Black, glassy, and vesicular (BGV). (b) Black, 
glassy, and dense (BGD). (c) Black and non-glassy 
(BN). (d) Altered particle (AL). (e) Plagioclase (PL). 
Scale bar is 2 mm.
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3.2  Component analysis using the trained CNN
The RGB microphotographs of the six ash samples were 

subjected to component analysis using the trained CNN 
(Table 1). The ash particles were randomly taken from each 
sample and placed on a light blue plastic plate. We took three 
or four RGB microphotographs of each sample under the 
same conditions (aperture, white balance, iso, and shutter 
speed) as for the images used in the CNN training. The RGB 
microphotographs were analyzed with the trained CNN, 
which outputs the probability that the particle being evaluated 
falls into each category. The probabilities were evaluated 
for each particle, and the particles were classified into the 
category of highest probability. The component fractions of 
the five categories were then calculated for the six samples 
by counting the number of particles classified into each 
category. The classification was done for all particles taken 
in the RGB microphotographs. The number of classified 
particles ranged from 69 to 117 for the samples, resulting in 
a total of 518 classified particles (Table 1). The classification 
was finished within 3 min using a personal computer with 
1.8 GB of RAM and a 2.30 GHz CPU.
3.3  Manual classification under stereoscopic microscope

To compare with the classification by CNN, we evaluated 
component fraction of the six ash samples by manual 
classification under stereoscopic microscope. 

4. Results and Discussion
Fig. 3 shows the error rates of the training as a function 

of epoch. The error rates rapidly decreased within 10 epochs 
and mostly converged by 30 epochs. Therefore, we used the 
trained CNN built over 30 epochs, for which the error rate is 
~1% for the current dataset.

We tested the trained CNN on five particle images for 
every each category which were not used for the training. 
In the categories of BGV, BN, and PL, a 100% accuracy 
was achieved, while in the categories of BGD and AL, 
accuracy rates of 60% and 75% were obtained, respectively. 
The BGD was misclassified as BGV and BN. The BGV is 
glassy particle with vesicles, while BN is non-glassy particle 
which almost lack vesicles. It is considered that BGD was 
misclassified into BGV and BN because BGD is glassy 

particle without vesicles having intermediate properties 
between BGV and BN. Additionally, AL was misclassified 
as PL. This may be attributed that AL often appearing white, 
and the high brightness observed in PL being seen as white 
color in the images.

The classification results obtained by the trained CNN are 
generally consistent with those of the manual classification 
(Fig. 4). The classification using the trained CNN tends to 
output a higher fraction of juvenile material (BGV and BGD) 
than the fraction by the manual classification method. This 
is because the manual classification, which is in 3D, rejects 
to identify ash particles as juvenile particles even in the case 
of only a small amount of AL or BN being evident in the 
particle. In the CNN classification, which is in 2D, the ash 
particles are only observed from a single direction and, even 
if there is AL or BN present in another plane, the particle is 
classified as juvenile. The texture of ash particle is generally 
heterogenous and sometimes contains parts classified into 
some categories even in a single particle. The classification 
results indicate the contribution of juvenile material increased 
from November to December 2014, and AL particles 
dominate the ash sample collected from the discrete eruption 
on 8 October 2016, which might reflect a change in eruption 
style. Compared to the other samples, Aso-05 used in the 
training shows a larger difference between the results from 
CNN and manual classification. This may be because the 
texture of AL which occupies the majority is similar with that 
of BN in Aso-05.

Component analysis of volcanic ash particles by the CNN 
method could be applied to quasi-real-time monitoring of 
ongoing eruptive activity. This method also successfully 
classified the volcanic ash particles in the samples that 
contained lithic and altered particles, by taking account of 
surface microstructures. This advance is useful for monitoring 
eruptive activity because these types of particles provide clues 
to eruption style1), 2), 18), 20), 24). In addition, the trained CNN 
successfully classified 518 particles within 3 min, which 
is shorter than the typical timescale of changes in eruptive 
activity2), 23), 25). The time scale of the CNN classification is 
a results of sum of the time scales. Approximately 12 hours 
for transportation of ash sample from the field to laboratory. 

Fig. 2 Schematic structure of the RAPID software used for the deep convolutional neural network method.
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10 minutes washing. 20 minutes drying. 1 minute sieving. 15 
minutes for taking photograph. Image transfer and processing 
are 3 minutes. Although the data processing time is too long 
for real-time monitoring, it is sufficient for quasi-real-time 
monitoring if the collection and preparation of ash samples 
can be done in the field. Moreover, the classification based 
on the CNN is objective and consistent over the duration 
of an eruption event, which is important when the eruptive 
activity is prolonged. Finally, we suggest that the combined 
observation of CNN classification with the automatic onsite 
imaging of ash particles in the field which reduces the time of 
transportation of ash sample26) sufficiently contributes quasi-
real-time monitoring of style of an ongoing eruptive activity.

5. Conclusions
We used the CNN method to undertake a component 

analysis of volcanic ash particles from the 2014–2016 
activity at Aso volcano, Japan. The component analysis 
by the trained CNN is consistent with that by manual 
classification, and succeeded in classifying volcanic ash 
particles in samples containing lithic and altered particles. 
The trained CNN successfully classified 518 particles in the 
microphotographs within 3 min. Therefore, we conclude that 
component analysis by CNN on RGB microphotographs of 
ash particles can be used for quasi-real-time monitoring of 
ongoing eruptive activity.
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RGB 顕微鏡画像を用いた畳み込みニューラルネットワークによる火山灰粒子の分類

－進行する火山噴火のリアルタイムモニタリングに向けて－

三輪学央＊・長井雅史＊・上田英樹 ＊・横尾亮彦＊＊

＊防災科学技術研究所　火山防災研究部門
＊＊京都大学大学院 理学研究科附属地球熱学研究施設火山研究センター

要　旨

噴火様式の連続リアルタイムモニタリングはハザード評価に不可欠である．火山灰粒子の構成物比は

噴火様式のプロキシとして用いられてきた．しかし，火山灰構成物比のリアルタイムモニタリングはま

だ実現されていない．本研究では，畳み込みニューラルネットワーク（CNN）と RGB 顕微鏡写真を用い

て，2014 年から 2016 年にかけて噴出された阿蘇火山の火山灰粒子を分類した．我々は，2 つの火山灰

試料の粒子を 5 つのカテゴリに分類し，計 512 枚の画像を用いて CNN アルゴリズムに基づく学習を行っ

た．次に，学習させた CNN を用いて，6 試料の構成物解析を行った．その結果，CNN による構成物比は，

実体顕微鏡観察に基づく分類結果と調和的であり，また顕微鏡写真中の 518 個の粒子を 3 分以内に分類

することに成功した．以上から，RGB 顕微鏡写真と CNN を用いた構成物解析は，噴火の準リアルタイ

ムモニタリングに適用可能であると結論できる．

キーワード： 火山灰粒子，機械学習，畳み込みニューラルネットワーク，RGB 顕微鏡画像，火山観測


