{"created":"2023-03-31T01:41:58.291215+00:00","id":4025,"links":{},"metadata":{"_buckets":{"deposit":"bee7336a-a1d9-4ec8-93ec-d37394799fc0"},"_deposit":{"id":"4025","owners":[1],"pid":{"revision_id":0,"type":"depid","value":"4025"},"status":"published"},"_oai":{"id":"oai:nied-repo.bosai.go.jp:00004025","sets":[]},"author_link":[],"item_10001_biblio_info_7":{"attribute_name":"書誌情報","attribute_value_mlt":[{"bibliographicIssueDates":{"bibliographicIssueDate":"2016-03"},"bibliographicIssueNumber":"6","bibliographicPageEnd":"2581","bibliographicPageStart":"2576","bibliographicVolumeNumber":"43","bibliographic_titles":[{"bibliographic_title":"GEOPHYSICAL RESEARCH LETTERS","bibliographic_titleLang":"en"}]}]},"item_10001_description_5":{"attribute_name":"抄録","attribute_value_mlt":[{"subitem_description":"Earth's rotation causes splitting of normal modes. Wave fronts and rays are, however, not affected by Earth's rotation, as we show theoretically and with observations made with USArray. We derive that the Coriolis force causes a small transverse component for P waves and a small longitudinal component for S waves. More importantly, Earth's rotation leads to a slow rotation of the transverse polarization of S waves; during the propagation of S waves the particle motion behaves just like a Foucault pendulum. The polarization plane of shear waves counteracts Earth's rotation and rotates clockwise in the Northern Hemisphere. The rotation rate is independent of the wave frequency and is purely geometric, like the Berry phase. Using the polarization of ScS and ScS2 waves, we show that the Foucault-like rotation of the S wave polarization can be observed. This can affect the determination of source mechanisms and the interpretation of observed SKS splitting.","subitem_description_language":"en","subitem_description_type":"Other"}]},"item_10001_publisher_8":{"attribute_name":"出版者","attribute_value_mlt":[{"subitem_publisher":"AMER GEOPHYSICAL UNION","subitem_publisher_language":"en"}]},"item_10001_relation_14":{"attribute_name":"DOI","attribute_value_mlt":[{"subitem_relation_type_id":{"subitem_relation_type_id_text":"10.1002/2015GL067598"}}]},"item_10001_source_id_9":{"attribute_name":"ISSN","attribute_value_mlt":[{"subitem_source_identifier":"1944-8007","subitem_source_identifier_type":"EISSN"}]},"item_creator":{"attribute_name":"著者","attribute_type":"creator","attribute_value_mlt":[{"creatorNames":[{"creatorName":"Roel Snieder","creatorNameLang":"en"}]},{"creatorNames":[{"creatorName":"Christoph Sens-Schoenfelder","creatorNameLang":"en"}]},{"creatorNames":[{"creatorName":"Elmer Ruigrok","creatorNameLang":"en"}]},{"creatorNames":[{"creatorName":"Katsuhiko Shiomi","creatorNameLang":"en"}]}]},"item_language":{"attribute_name":"言語","attribute_value_mlt":[{"subitem_language":"eng"}]},"item_title":"Seismic shear waves as Foucault pendulum","item_titles":{"attribute_name":"タイトル","attribute_value_mlt":[{"subitem_title":"Seismic shear waves as Foucault pendulum","subitem_title_language":"en"}]},"item_type_id":"40001","owner":"1","path":["1670839190650"],"pubdate":{"attribute_name":"PubDate","attribute_value":"2023-03-30"},"publish_date":"2023-03-30","publish_status":"0","recid":"4025","relation_version_is_last":true,"title":["Seismic shear waves as Foucault pendulum"],"weko_creator_id":"1","weko_shared_id":-1},"updated":"2023-03-31T01:42:00.513830+00:00"}