{"created":"2023-03-31T01:45:23.808653+00:00","id":4127,"links":{},"metadata":{"_buckets":{"deposit":"c529c2b7-f729-49fe-b201-3eb7c27098f7"},"_deposit":{"id":"4127","owners":[1],"pid":{"revision_id":0,"type":"depid","value":"4127"},"status":"published"},"_oai":{"id":"oai:nied-repo.bosai.go.jp:00004127","sets":[]},"author_link":[],"item_10001_biblio_info_7":{"attribute_name":"書誌情報","attribute_value_mlt":[{"bibliographicIssueDates":{"bibliographicIssueDate":"2002-08"},"bibliographicIssueNumber":"9","bibliographicPageEnd":"2066","bibliographicPageStart":"2057","bibliographicVolumeNumber":"159","bibliographic_titles":[{"bibliographic_title":"PURE AND APPLIED GEOPHYSICS","bibliographic_titleLang":"en"}]}]},"item_10001_description_5":{"attribute_name":"抄録","attribute_value_mlt":[{"subitem_description":"We have simulated a rupture transition from quasi-static growth to dynamic propagation using the boundary integral equation method. In order to make a physically reasonable model of earthquake cycle, we have to evaluate the dynamic rupture propagation in the context of quasi-static simulation. We used a snapshot of the stress distribution just before the earthquake in the quasi-static simulation. The resultant stress will be fed back to the quasi-static simulation. Since the quasi-static simulation used the slip-and time-dependent constitutive relation, the friction law itself evolves with time. Thus, we used the slip-weakening constitutive relation for dynamic rupture propagation consistent with that used for the quasi-static simulation. We modeled a San Andreas type strike-slip fault, in which two different size asperities existed.","subitem_description_language":"en","subitem_description_type":"Other"}]},"item_10001_publisher_8":{"attribute_name":"出版者","attribute_value_mlt":[{"subitem_publisher":"BIRKHAUSER VERLAG AG","subitem_publisher_language":"en"}]},"item_10001_relation_14":{"attribute_name":"DOI","attribute_value_mlt":[{"subitem_relation_type_id":{"subitem_relation_type_id_text":"10.1007/s00024-002-8723-x"}}]},"item_10001_source_id_9":{"attribute_name":"ISSN","attribute_value_mlt":[{"subitem_source_identifier":"0033-4553","subitem_source_identifier_type":"ISSN"}]},"item_creator":{"attribute_name":"著者","attribute_type":"creator","attribute_value_mlt":[{"creatorNames":[{"creatorName":"E Fukuyama","creatorNameLang":"en"}]},{"creatorNames":[{"creatorName":"C Hashimoto","creatorNameLang":"en"}]},{"creatorNames":[{"creatorName":"M Matsu'ura","creatorNameLang":"en"}]}]},"item_language":{"attribute_name":"言語","attribute_value_mlt":[{"subitem_language":"eng"}]},"item_title":"Simulation of the transition of earthquake rupture from quasi-static growth to dynamic propagation","item_titles":{"attribute_name":"タイトル","attribute_value_mlt":[{"subitem_title":"Simulation of the transition of earthquake rupture from quasi-static growth to dynamic propagation","subitem_title_language":"en"}]},"item_type_id":"40001","owner":"1","path":["1670839190650"],"pubdate":{"attribute_name":"PubDate","attribute_value":"2023-03-30"},"publish_date":"2023-03-30","publish_status":"0","recid":"4127","relation_version_is_last":true,"title":["Simulation of the transition of earthquake rupture from quasi-static growth to dynamic propagation"],"weko_creator_id":"1","weko_shared_id":-1},"updated":"2023-03-31T01:45:26.164092+00:00"}