{"created":"2023-03-31T02:40:31.291240+00:00","id":5728,"links":{},"metadata":{"_buckets":{"deposit":"7d8c7b33-4b69-4edd-95b2-1ad287b40703"},"_deposit":{"id":"5728","owners":[1],"pid":{"revision_id":0,"type":"depid","value":"5728"},"status":"published"},"_oai":{"id":"oai:nied-repo.bosai.go.jp:00005728","sets":[]},"author_link":[],"item_10001_biblio_info_7":{"attribute_name":"書誌情報","attribute_value_mlt":[{"bibliographicIssueDates":{"bibliographicIssueDate":"2011-08","bibliographicIssueDateType":"Issued"},"bibliographicIssueNumber":"58","bibliographicPageEnd":"64","bibliographicPageStart":"57","bibliographicVolumeNumber":"52","bibliographic_titles":[{"bibliographic_title":"Annals of Glaciology","bibliographic_titleLang":"en"}]}]},"item_10001_description_5":{"attribute_name":"抄録","attribute_value_mlt":[{"subitem_description":"Here we apply a two-phase flow model to simulate snow avalanche motion. Flowing snow is modeled as a Bingham fluid. Small-scale laboratory experiments were conducted using a rotating viscometer to validate the constitutive model. Experimental scale model test-runs were also performed, and run-out distances and impact pressures obtained in the model tests were reproduced using the twophase flow model. Comparisons revealed that the simulated results were strongly dependent on the basal friction angle and calculation mesh size. Although the method reproduced the laboratory model results quite well, constitutive aspects of the basal surface remained unsolved. Future research will need to incorporate a numerical technique to handle the basal boundary, such as a boundary-fitted coordinate technique.","subitem_description_language":"en","subitem_description_type":"Other"}]},"item_10001_relation_14":{"attribute_name":"DOI","attribute_value_mlt":[{"subitem_relation_type_id":{"subitem_relation_type_id_text":"10.3189/172756411797252284"}}]},"item_10001_source_id_9":{"attribute_name":"ISSN","attribute_value_mlt":[{"subitem_source_identifier":"0260-3055","subitem_source_identifier_type":"ISSN"}]},"item_creator":{"attribute_name":"著者","attribute_type":"creator","attribute_value_mlt":[{"creatorNames":[{"creatorName":"Kenichi Oda","creatorNameLang":"en"}]},{"creatorNames":[{"creatorName":"Shuji Moriguchi","creatorNameLang":"en"}]},{"creatorNames":[{"creatorName":"Isao Kamiishi","creatorNameLang":"en"}]},{"creatorNames":[{"creatorName":"Atsushi Yashima","creatorNameLang":"en"}]},{"creatorNames":[{"creatorName":"Kazuhide Sawada","creatorNameLang":"en"}]},{"creatorNames":[{"creatorName":"Atsushi Sato","creatorNameLang":"en"}]}]},"item_title":"Simulation of a snow avalanche model test using computational fluid dynamics","item_titles":{"attribute_name":"タイトル","attribute_value_mlt":[{"subitem_title":"Simulation of a snow avalanche model test using computational fluid dynamics","subitem_title_language":"en"}]},"item_type_id":"40001","owner":"1","path":["1670839190650"],"pubdate":{"attribute_name":"PubDate","attribute_value":"2023-03-30"},"publish_date":"2023-03-30","publish_status":"0","recid":"5728","relation_version_is_last":true,"title":["Simulation of a snow avalanche model test using computational fluid dynamics"],"weko_creator_id":"1","weko_shared_id":-1},"updated":"2023-06-08T09:29:07.806195+00:00"}