{"created":"2023-09-20T08:09:47.487822+00:00","id":6379,"links":{},"metadata":{"_buckets":{"deposit":"a5b0bfa7-361a-4d78-ba32-77ba22071a33"},"_deposit":{"created_by":7,"id":"6379","owners":[7],"pid":{"revision_id":0,"type":"depid","value":"6379"},"status":"published"},"_oai":{"id":"oai:nied-repo.bosai.go.jp:00006379","sets":[]},"author_link":[],"item_10001_biblio_info_7":{"attribute_name":"書誌情報","attribute_value_mlt":[{"bibliographicIssueDates":{"bibliographicIssueDate":"2021-10-25","bibliographicIssueDateType":"Issued"},"bibliographicVolumeNumber":"929","bibliographic_titles":[{"bibliographic_title":"Journal of Fluid Mechanics","bibliographic_titleLang":"ja"},{"bibliographic_title":"JOURNAL OF FLUID MECHANICS","bibliographic_titleLang":"en"}]}]},"item_10001_description_5":{"attribute_name":"抄録","attribute_value_mlt":[{"subitem_description":"<jats:p>In high-Reynolds-number turbulence the spatial distribution of velocity fluctuation at small scales is strongly non-uniform. In accordance with the non-uniformity, the distributions of the inertial and viscous forces are also non-uniform. According to direct numerical simulation (DNS) of forced turbulence of an incompressible fluid obeying the Navier?Stokes equation in a periodic box at the Taylor microscale Reynolds number <jats:inline-formula>\n <jats:alternatives>\n <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0022112021008065_inline1.png\" />\n <jats:tex-math>$R_\\lambda \\approx 1100$</jats:tex-math>\n </jats:alternatives>\n </jats:inline-formula>, the average <jats:inline-formula>\n <jats:alternatives>\n <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0022112021008065_inline2.png\" />\n <jats:tex-math>$\\langle R_{loc}\\rangle$</jats:tex-math>\n </jats:alternatives>\n </jats:inline-formula> over the space of the ‘local Reynolds number’ <jats:inline-formula>\n <jats:alternatives>\n <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0022112021008065_inline3.png\" />\n <jats:tex-math>$R_ {loc}$</jats:tex-math>\n </jats:alternatives>\n </jats:inline-formula>, which is defined as the ratio of inertial to viscous forces at each point in the flow, is much smaller than the conventional ‘Reynolds number’ given by <jats:inline-formula>\n <jats:alternatives>\n <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0022112021008065_inline4.png\" />\n <jats:tex-math>$Re \\equiv UL/\\nu$</jats:tex-math>\n </jats:alternatives>\n </jats:inline-formula>, where <jats:inline-formula>\n <jats:alternatives>\n <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0022112021008065_inline5.png\" />\n <jats:tex-math>$U$</jats:tex-math>\n </jats:alternatives>\n </jats:inline-formula> and <jats:inline-formula>\n <jats:alternatives>\n <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0022112021008065_inline6.png\" />\n <jats:tex-math>$L$</jats:tex-math>\n </jats:alternatives>\n </jats:inline-formula> are the characteristic velocity and length of the energy-containing eddies, and <jats:inline-formula>\n <jats:alternatives>\n <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0022112021008065_inline7.png\" />\n <jats:tex-math>$\\nu$</jats:tex-math>\n </jats:alternatives>\n </jats:inline-formula> is the kinematic viscosity. While both conditional averages of the inertial and viscous forces for a given squared vorticity <jats:inline-formula>\n <jats:alternatives>\n <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0022112021008065_inline8.png\" />\n <jats:tex-math>$\\omega ^{2}$</jats:tex-math>\n </jats:alternatives>\n </jats:inline-formula> increase with <jats:inline-formula>\n <jats:alternatives>\n <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0022112021008065_inline9.png\" />\n <jats:tex-math>$\\omega ^{2}$</jats:tex-math>\n </jats:alternatives>\n </jats:inline-formula> at large <jats:inline-formula>\n <jats:alternatives>\n <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0022112021008065_inline10.png\" />\n <jats:tex-math>$\\omega ^{2}$</jats:tex-math>\n </jats:alternatives>\n </jats:inline-formula>, the conditional average of <jats:inline-formula>\n <jats:alternatives>\n <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0022112021008065_inline11.png\" />\n <jats:tex-math>$R_ {loc}$</jats:tex-math>\n </jats:alternatives>\n </jats:inline-formula> is almost independent of <jats:inline-formula>\n <jats:alternatives>\n <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0022112021008065_inline12.png\" />\n <jats:tex-math>$\\omega ^{2}$</jats:tex-math>\n </jats:alternatives>\n </jats:inline-formula>. A comparison of the DNS field with a random structureless velocity field suggests that the increase in the conditional average of <jats:inline-formula>\n <jats:alternatives>\n <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0022112021008065_inline13.png\" />\n <jats:tex-math>$R_ {loc}$</jats:tex-math>\n </jats:alternatives>\n </jats:inline-formula> with <jats:inline-formula>\n <jats:alternatives>\n <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0022112021008065_inline14.png\" />\n <jats:tex-math>$\\omega ^{2}$</jats:tex-math>\n </jats:alternatives>\n </jats:inline-formula> at large <jats:inline-formula>\n <jats:alternatives>\n <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0022112021008065_inline15.png\" />\n <jats:tex-math>$\\omega ^{2}$</jats:tex-math>\n </jats:alternatives>\n </jats:inline-formula> is suppressed by the Navier?Stokes dynamics. Something similar is also true for the conditional averages for a given local energy dissipation rate per unit mass. Certain features of intermittency effects such as that on the <jats:inline-formula>\n <jats:alternatives>\n <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0022112021008065_inline16.png\" />\n <jats:tex-math>$Re$</jats:tex-math>\n </jats:alternatives>\n </jats:inline-formula> dependence of <jats:inline-formula>\n <jats:alternatives>\n <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0022112021008065_inline17.png\" />\n <jats:tex-math>$\\langle R_{loc}\\rangle$</jats:tex-math>\n </jats:alternatives>\n </jats:inline-formula> are explained by a multi-fractal model by Dubrulle (<jats:italic>J. Fluid Mech.</jats:italic>, vol. 867, 2019, P1).</jats:p>","subitem_description_language":"ja","subitem_description_type":"Other"},{"subitem_description":"In high-Reynolds-number turbulence the spatial distribution of velocity fluctuation at small scales is strongly non-uniform. In accordance with the non-uniformity, the distributions of the inertial and viscous forces are also non-uniform. According to direct numerical simulation (DNS) of forced turbulence of an incompressible fluid obeying the Navier-Stokes equation in a periodic box at the Taylor microscale Reynolds number R-lambda approximate to 1100, the average < R-loc > over the space of the 'local Reynolds number' R-loc, which is defined as the ratio of inertial to viscous forces at each point in the flow, is much smaller than the conventional 'Reynolds number' given by Re = UL/v, where U and L are the characteristic velocity and length of the energy-containing eddies, and nu is the kinematic viscosity. While both conditional averages of the inertial and viscous forces for a given squared vorticity omega(2) increase with omega(2) at large omega(2), the conditional average of R-loc is almost independent of omega(2). A comparison of the DNS field with a random structureless velocity field suggests that the increase in the conditional average of R-loc with omega(2) at large omega(2) is suppressed by the Navier-Stokes dynamics. Something similar is also true for the conditional averages for a given local energy dissipation rate per unit mass. Certain features of intermittency effects such as that on the Re dependence of < R-loc > are explained by a multi-fractal model by Dubrulle (J. Fluid Mech., vol. 867, 2019, P1).","subitem_description_language":"en","subitem_description_type":"Other"}]},"item_10001_publisher_8":{"attribute_name":"出版者","attribute_value_mlt":[{"subitem_publisher":"Cambridge University Press (CUP)","subitem_publisher_language":"ja"},{"subitem_publisher":"CAMBRIDGE UNIV PRESS","subitem_publisher_language":"en"}]},"item_10001_relation_14":{"attribute_name":"DOI","attribute_value_mlt":[{"subitem_relation_type_id":{"subitem_relation_type_id_text":"10.1017/jfm.2021.806"}}]},"item_10001_source_id_9":{"attribute_name":"ISSN","attribute_value_mlt":[{"subitem_source_identifier":"1469-7645","subitem_source_identifier_type":"EISSN"}]},"item_creator":{"attribute_name":"著者","attribute_type":"creator","attribute_value_mlt":[{"creatorNames":[{"creatorName":"Yukio Kaneda","creatorNameLang":"ja"},{"creatorName":"Yukio Kaneda","creatorNameLang":"en"}]},{"creatorNames":[{"creatorName":"Takashi Ishihara","creatorNameLang":"ja"},{"creatorName":"Takashi Ishihara","creatorNameLang":"en"}]},{"creatorNames":[{"creatorName":"Koji Morishita","creatorNameLang":"ja"},{"creatorName":"Koji Morishita","creatorNameLang":"en"}]},{"creatorNames":[{"creatorName":"Mitsuo Yokokawa","creatorNameLang":"ja"},{"creatorName":"Mitsuo Yokokawa","creatorNameLang":"en"}]},{"creatorNames":[{"creatorName":"Atsuya Uno","creatorNameLang":"ja"},{"creatorName":"Atsuya Uno","creatorNameLang":"en"}]}]},"item_language":{"attribute_name":"言語","attribute_value_mlt":[{"subitem_language":"eng"}]},"item_title":"Statistics of local Reynolds number in box turbulence: ratio of inertial to viscous forces","item_titles":{"attribute_name":"タイトル","attribute_value_mlt":[{"subitem_title":"Statistics of local Reynolds number in box turbulence: ratio of inertial to viscous forces","subitem_title_language":"ja"},{"subitem_title":"Statistics of local Reynolds number in box turbulence: ratio of inertial to viscous forces","subitem_title_language":"en"}]},"item_type_id":"40001","owner":"7","path":["1670839190650"],"pubdate":{"attribute_name":"PubDate","attribute_value":"2023-09-20"},"publish_date":"2023-09-20","publish_status":"0","recid":"6379","relation_version_is_last":true,"title":["Statistics of local Reynolds number in box turbulence: ratio of inertial to viscous forces"],"weko_creator_id":"7","weko_shared_id":-1},"updated":"2023-09-20T08:09:50.179178+00:00"}