{"created":"2023-09-20T08:09:59.633589+00:00","id":6384,"links":{},"metadata":{"_buckets":{"deposit":"24be3d7f-d715-4342-8c87-66e37358dd7f"},"_deposit":{"created_by":7,"id":"6384","owners":[7],"pid":{"revision_id":0,"type":"depid","value":"6384"},"status":"published"},"_oai":{"id":"oai:nied-repo.bosai.go.jp:00006384","sets":[]},"author_link":[],"item_10001_biblio_info_7":{"attribute_name":"書誌情報","attribute_value_mlt":[{"bibliographicIssueDates":{"bibliographicIssueDate":"2012","bibliographicIssueDateType":"Issued"},"bibliographicPageEnd":"350","bibliographicPageStart":"344","bibliographic_titles":[{"bibliographic_title":"2012 IEEE 14TH INTERNATIONAL CONFERENCE ON HIGH PERFORMANCE COMPUTING AND COMMUNICATIONS & 2012 IEEE 9TH INTERNATIONAL CONFERENCE ON EMBEDDED SOFTWARE AND SYSTEMS (HPCC-ICESS)","bibliographic_titleLang":"en"}]}]},"item_10001_description_5":{"attribute_name":"抄録","attribute_value_mlt":[{"subitem_description":"In this paper, we propose an implementation of a parallel one-dimensional fast Fourier transform (FFT) on the K computer. The proposed algorithm is based on the six-step FFT algorithm, which can be altered into the recursive six-step FFT algorithm to reduce the number of cache misses. The recursive six-step FFT algorithm improves performance by utilizing the cache memory effectively. We use the recursive six-step FFT algorithm to implement the parallel one-dimensional FFT algorithm. The performance results of one-dimensional FFTs on the K computer are reported. We successfully achieved a performance of over 18 TFlops on 8192 nodes of the K computer (82944 nodes, 128 GFlops/node, 10.6 PFlops peak performance) for a 2(41)-point FFT.","subitem_description_language":"en","subitem_description_type":"Other"}]},"item_10001_publisher_8":{"attribute_name":"出版者","attribute_value_mlt":[{"subitem_publisher":"IEEE COMPUTER SOC","subitem_publisher_language":"en"}]},"item_10001_relation_14":{"attribute_name":"DOI","attribute_value_mlt":[{"subitem_relation_type_id":{"subitem_relation_type_id_text":"10.1109/HPCC.2012.53"}}]},"item_10001_source_id_9":{"attribute_name":"ISSN","attribute_value_mlt":[{"subitem_source_identifier":"2576-3512","subitem_source_identifier_type":"EISSN"}]},"item_creator":{"attribute_name":"著者","attribute_type":"creator","attribute_value_mlt":[{"creatorNames":[{"creatorName":"Daisuke Takahashi","creatorNameLang":"en"}]},{"creatorNames":[{"creatorName":"Atsuya Uno","creatorNameLang":"en"}]},{"creatorNames":[{"creatorName":"Mitsuo Yokokawa","creatorNameLang":"en"}]}]},"item_language":{"attribute_name":"言語","attribute_value_mlt":[{"subitem_language":"eng"}]},"item_title":"An Implementation of Parallel 1-D FFT on the K computer","item_titles":{"attribute_name":"タイトル","attribute_value_mlt":[{"subitem_title":"An Implementation of Parallel 1-D FFT on the K computer","subitem_title_language":"en"}]},"item_type_id":"40001","owner":"7","path":["1670839190650"],"pubdate":{"attribute_name":"PubDate","attribute_value":"2023-09-20"},"publish_date":"2023-09-20","publish_status":"0","recid":"6384","relation_version_is_last":true,"title":["An Implementation of Parallel 1-D FFT on the K computer"],"weko_creator_id":"7","weko_shared_id":-1},"updated":"2023-09-20T08:10:01.470522+00:00"}