@misc{oai:nied-repo.bosai.go.jp:00007189, author = {防災科学技術研究所 and National Research Institute for Earth Science and Disaster Resilience}, month = {}, note = {本研究では、高層建物モデルと低層建物モデルの2ケースで実験を行いました。高層建物モデルでは、高さ120 メートルの30 階建て建物を想定しています。試験体は、その高層建物の6階相当の揺れが生じる一番下の鉄骨造の骨組と、27 階と28 階相当の揺れが生じる上二つの鉄骨造の骨組で構成されており、残りの中間部分を大重量のコンクリートスラブと積層ゴムで代用しました。また、低層建物モデルでは、中間部分を鋼材プレートで固定して、積層ゴムが効かないようにしました。試験体は、オフィス空間および住居空間を設けました。オフィス空間の天井はシステム天井とし、今まで多数使われてきたライン天井と、耐震性の観点から有利なグリッド天井を組み込んでいます。さらに、天井内部に空調設備等の一般機器、消防用設備であるスプリンクラー、火災報知器、非常用照明を組み込み、実建物と同等の設備機能を再現しています。, In this study, two cases were used for the experiment: a high-rise building model and a low-rise building model. The high-rise building model was based on a 30-story building with a height of 120 meters. The test specimen consisted of the lowest steel frame, which was designed to produce the same shaking as a 6-story high-rise building, and the two upper steel frames, which were designed to produce the same shaking as a 27-story and 28-story high-rise building. The remaining middle part was replaced with a heavy concrete slab and laminated rubber. In the low-rise building model, the middle part was fixed with steel plates to prevent the laminated rubber from working. The test specimen had the widest floor area of any of the previous experiments, and included office and residential spaces. The office space had a suspended ceiling, incorporating both the line ceiling that has been used in many buildings to date, and the grid ceiling, which is advantageous from the perspective of earthquake resistance. Furthermore, the ceiling also incorporated general equipment, reproducing the same equipment functions as in a real building., データ取得:2011年, Data acquisition period : 2011, お問い合わせ:asebi@bosai.go.jp, inquiry: asebi@bosai.go.jp}, title = {長周期地震動による被害軽減対策の研究開発}, year = {2013}, yomi = {ボウサイカガクギジュツケンキュウショ} }