{"_buckets": {"deposit": "b8fbcc9f-d436-4461-ad43-ef3a6df9047f"}, "_deposit": {"id": "4257", "owners": [1], "pid": {"revision_id": 0, "type": "depid", "value": "4257"}, "status": "published"}, "_oai": {"id": "oai:nied-repo.bosai.go.jp:00004257", "sets": []}, "author_link": [], "item_10001_biblio_info_7": {"attribute_name": "書誌情報", "attribute_value_mlt": [{"bibliographicIssueDates": {"bibliographicIssueDate": "2018"}, "bibliographicPageEnd": "822", "bibliographicPageStart": "815", "bibliographicVolumeNumber": "152", "bibliographic_titles": [{"bibliographic_title": "CLEANER ENERGY FOR CLEANER CITIES", "bibliographic_titleLang": "en"}]}]}, "item_10001_description_5": {"attribute_name": "抄録", "attribute_value_mlt": [{"subitem_description": "The carbon emission pattern of the built environment is closely associated with its morphological and functional structures. Based on the online volunteered geographic information and some publicly available official data sources, this study intends to provide a standardized framework for estimating the indirect building carbon emissions within the boundaries of various types of Local Climate Zones (LCZs), to better forecast the LCZ carbon emission patterns and assist district wide energy management. The whole research is devised into four sequential sections: First, the statistics of energy use intensity of different building uses (including residential and non-residential buildings) are retrieved from official data sources using a down-scaled approach; then a random forest machine learning method is applied to automatically identify building uses based on the training samples; next, a GIS method is developed to delineate the LCZs in Shanghai utilizing calculated urban form and land cover parameters; finally, the building carbon emission values are linked to the LCZs to determine the emission coefficient of different LCZ categories in Shanghai Copyright (C) 2018 Elsevier Ltd. All rights reserved.", "subitem_description_language": "en", "subitem_description_type": "Other"}]}, "item_10001_publisher_8": {"attribute_name": "出版者", "attribute_value_mlt": [{"subitem_publisher": "ELSEVIER SCIENCE BV", "subitem_publisher_language": "en"}]}, "item_10001_relation_14": {"attribute_name": "DOI", "attribute_value_mlt": [{"subitem_relation_type_id": {"subitem_relation_type_id_text": "10.1016/j.egypro.2018.09.195"}}]}, "item_10001_source_id_9": {"attribute_name": "ISSN", "attribute_value_mlt": [{"subitem_source_identifier": "1876-6102", "subitem_source_identifier_type": "ISSN"}]}, "item_creator": {"attribute_name": "著者", "attribute_type": "creator", "attribute_value_mlt": [{"creatorNames": [{"creatorName": "Yihan Wu", "creatorNameLang": "en"}]}, {"creatorNames": [{"creatorName": "Ayyoob Sharifi", "creatorNameLang": "en"}]}, {"creatorNames": [{"creatorName": "Perry Yang", "creatorNameLang": "en"}]}, {"creatorNames": [{"creatorName": "Habura Borjigin", "creatorNameLang": "en"}]}, {"creatorNames": [{"creatorName": "Daisuke Murakami", "creatorNameLang": "en"}]}, {"creatorNames": [{"creatorName": "Yoshiki Yamagata", "creatorNameLang": "en"}]}]}, "item_language": {"attribute_name": "言語", "attribute_value_mlt": [{"subitem_language": "eng"}]}, "item_title": "Mapping building carbon emissions within local climate zones in Shanghai", "item_titles": {"attribute_name": "タイトル", "attribute_value_mlt": [{"subitem_title": "Mapping building carbon emissions within local climate zones in Shanghai", "subitem_title_language": "en"}]}, "item_type_id": "40001", "owner": "1", "path": ["1670839190650"], "permalink_uri": "https://nied-repo.bosai.go.jp/records/4257", "pubdate": {"attribute_name": "PubDate", "attribute_value": "2023-03-30"}, "publish_date": "2023-03-30", "publish_status": "0", "recid": "4257", "relation": {}, "relation_version_is_last": true, "title": ["Mapping building carbon emissions within local climate zones in Shanghai"], "weko_shared_id": -1}
Mapping building carbon emissions within local climate zones in Shanghai
https://nied-repo.bosai.go.jp/records/4257
https://nied-repo.bosai.go.jp/records/4257