WEKO3
アイテム
{"_buckets": {"deposit": "69e5802a-3c35-4101-986d-f538c0936fc2"}, "_deposit": {"id": "4672", "owners": [1], "pid": {"revision_id": 0, "type": "depid", "value": "4672"}, "status": "published"}, "_oai": {"id": "oai:nied-repo.bosai.go.jp:00004672", "sets": []}, "author_link": [], "item_10001_biblio_info_7": {"attribute_name": "書誌情報", "attribute_value_mlt": [{"bibliographicIssueDates": {"bibliographicIssueDate": "2020-10-01", "bibliographicIssueDateType": "Issued"}, "bibliographicIssueNumber": "1", "bibliographicPageEnd": "210", "bibliographicPageStart": "197", "bibliographicVolumeNumber": "223", "bibliographic_titles": [{"bibliographic_title": "Geophysical Journal International", "bibliographic_titleLang": "en"}]}]}, "item_10001_description_5": {"attribute_name": "抄録", "attribute_value_mlt": [{"subitem_description": "\u003cjats:title\u003eSUMMARY\u003c/jats:title\u003e\n \u003cjats:p\u003eIn a dislocation problem, a paradoxical discordance is known to occur between an original smooth curve and an infinitesimally discretized curve. To solve this paradox, we have investigated a non-hypersingular expression for the integral kernel (called the stress Green’s function) which describes the stress field caused by the displacement discontinuity. We first develop a compact alternative expression of the non-hypersingular stress Green’s function for general 2-D and 3-D infinite homogeneous elastic media. We next compute the stress Green’s functions on a curved fault and revisit the paradox. We find that previously obtained non-hypersingular stress Green’s functions are incorrect for curved faults, and that smooth and infinitesimally segmented faults are equivalent. Their compatibility bridges the gap between analytical methods featuring curved faults and numerical methods using subdivided flat patches.\u003c/jats:p\u003e", "subitem_description_language": "en", "subitem_description_type": "Other"}]}, "item_10001_publisher_8": {"attribute_name": "出版者", "attribute_value_mlt": [{"subitem_publisher": "Oxford University Press ({OUP})", "subitem_publisher_language": "en"}]}, "item_10001_relation_14": {"attribute_name": "DOI", "attribute_value_mlt": [{"subitem_relation_type_id": {"subitem_relation_type_id_text": "10.1093/gji/ggaa172"}}]}, "item_10001_source_id_9": {"attribute_name": "ISSN", "attribute_value_mlt": [{"subitem_source_identifier": "0956-540X", "subitem_source_identifier_type": "ISSN"}]}, "item_creator": {"attribute_name": "著者", "attribute_type": "creator", "attribute_value_mlt": [{"creatorNames": [{"creatorName": "Dye S K Sato", "creatorNameLang": "en"}]}, {"creatorNames": [{"creatorName": "Pierre Romanet", "creatorNameLang": "en"}]}, {"creatorNames": [{"creatorName": "Ryosuke Ando", "creatorNameLang": "en"}]}]}, "item_language": {"attribute_name": "言語", "attribute_value_mlt": [{"subitem_language": "eng"}]}, "item_title": "Paradox of modelling curved faults revisited with general non-hypersingular stress Green’s functions", "item_titles": {"attribute_name": "タイトル", "attribute_value_mlt": [{"subitem_title": "Paradox of modelling curved faults revisited with general non-hypersingular stress Green’s functions", "subitem_title_language": "en"}]}, "item_type_id": "40001", "owner": "1", "path": ["1670839190650"], "permalink_uri": "https://nied-repo.bosai.go.jp/records/4672", "pubdate": {"attribute_name": "PubDate", "attribute_value": "2023-03-30"}, "publish_date": "2023-03-30", "publish_status": "0", "recid": "4672", "relation": {}, "relation_version_is_last": true, "title": ["Paradox of modelling curved faults revisited with general non-hypersingular stress Green’s functions"], "weko_shared_id": -1}
Paradox of modelling curved faults revisited with general non-hypersingular stress Green’s functions
https://nied-repo.bosai.go.jp/records/4672
https://nied-repo.bosai.go.jp/records/4672d9842fb3-47b8-4632-9ae2-f4f8ceb01684
Item type | researchmap(1) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
公開日 | 2023-03-30 | |||||||||||
タイトル | ||||||||||||
言語 | en | |||||||||||
タイトル | Paradox of modelling curved faults revisited with general non-hypersingular stress Green’s functions | |||||||||||
言語 | ||||||||||||
言語 | eng | |||||||||||
著者 |
Dye S K Sato
× Dye S K Sato
× Pierre Romanet
× Ryosuke Ando
|
|||||||||||
抄録 | ||||||||||||
内容記述タイプ | Other | |||||||||||
内容記述 | <jats:title>SUMMARY</jats:title> <jats:p>In a dislocation problem, a paradoxical discordance is known to occur between an original smooth curve and an infinitesimally discretized curve. To solve this paradox, we have investigated a non-hypersingular expression for the integral kernel (called the stress Green’s function) which describes the stress field caused by the displacement discontinuity. We first develop a compact alternative expression of the non-hypersingular stress Green’s function for general 2-D and 3-D infinite homogeneous elastic media. We next compute the stress Green’s functions on a curved fault and revisit the paradox. We find that previously obtained non-hypersingular stress Green’s functions are incorrect for curved faults, and that smooth and infinitesimally segmented faults are equivalent. Their compatibility bridges the gap between analytical methods featuring curved faults and numerical methods using subdivided flat patches.</jats:p> |
|||||||||||
言語 | en | |||||||||||
書誌情報 |
en : Geophysical Journal International 巻 223, 号 1, p. 197-210, 発行日 2020-10-01 |
|||||||||||
出版者 | ||||||||||||
言語 | en | |||||||||||
出版者 | Oxford University Press ({OUP}) | |||||||||||
ISSN | ||||||||||||
収録物識別子タイプ | ISSN | |||||||||||
収録物識別子 | 0956-540X | |||||||||||
DOI | ||||||||||||
関連識別子 | 10.1093/gji/ggaa172 |