ログイン サインアップ
言語:

WEKO3

  • トップ
  • ランキング
To
lat lon distance
To

Field does not validate



インデックスリンク

インデックスツリー

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

{"_buckets": {"deposit": "69e5802a-3c35-4101-986d-f538c0936fc2"}, "_deposit": {"id": "4672", "owners": [1], "pid": {"revision_id": 0, "type": "depid", "value": "4672"}, "status": "published"}, "_oai": {"id": "oai:nied-repo.bosai.go.jp:00004672", "sets": []}, "author_link": [], "item_10001_biblio_info_7": {"attribute_name": "書誌情報", "attribute_value_mlt": [{"bibliographicIssueDates": {"bibliographicIssueDate": "2020-10-01", "bibliographicIssueDateType": "Issued"}, "bibliographicIssueNumber": "1", "bibliographicPageEnd": "210", "bibliographicPageStart": "197", "bibliographicVolumeNumber": "223", "bibliographic_titles": [{"bibliographic_title": "Geophysical Journal International", "bibliographic_titleLang": "en"}]}]}, "item_10001_description_5": {"attribute_name": "抄録", "attribute_value_mlt": [{"subitem_description": "\u003cjats:title\u003eSUMMARY\u003c/jats:title\u003e\n \u003cjats:p\u003eIn a dislocation problem, a paradoxical discordance is known to occur between an original smooth curve and an infinitesimally discretized curve. To solve this paradox, we have investigated a non-hypersingular expression for the integral kernel (called the stress Green’s function) which describes the stress field caused by the displacement discontinuity. We first develop a compact alternative expression of the non-hypersingular stress Green’s function for general 2-D and 3-D infinite homogeneous elastic media. We next compute the stress Green’s functions on a curved fault and revisit the paradox. We find that previously obtained non-hypersingular stress Green’s functions are incorrect for curved faults, and that smooth and infinitesimally segmented faults are equivalent. Their compatibility bridges the gap between analytical methods featuring curved faults and numerical methods using subdivided flat patches.\u003c/jats:p\u003e", "subitem_description_language": "en", "subitem_description_type": "Other"}]}, "item_10001_publisher_8": {"attribute_name": "出版者", "attribute_value_mlt": [{"subitem_publisher": "Oxford University Press ({OUP})", "subitem_publisher_language": "en"}]}, "item_10001_relation_14": {"attribute_name": "DOI", "attribute_value_mlt": [{"subitem_relation_type_id": {"subitem_relation_type_id_text": "10.1093/gji/ggaa172"}}]}, "item_10001_source_id_9": {"attribute_name": "ISSN", "attribute_value_mlt": [{"subitem_source_identifier": "0956-540X", "subitem_source_identifier_type": "ISSN"}]}, "item_creator": {"attribute_name": "著者", "attribute_type": "creator", "attribute_value_mlt": [{"creatorNames": [{"creatorName": "Dye S K Sato", "creatorNameLang": "en"}]}, {"creatorNames": [{"creatorName": "Pierre Romanet", "creatorNameLang": "en"}]}, {"creatorNames": [{"creatorName": "Ryosuke Ando", "creatorNameLang": "en"}]}]}, "item_language": {"attribute_name": "言語", "attribute_value_mlt": [{"subitem_language": "eng"}]}, "item_title": "Paradox of modelling curved faults revisited with general non-hypersingular stress Green’s functions", "item_titles": {"attribute_name": "タイトル", "attribute_value_mlt": [{"subitem_title": "Paradox of modelling curved faults revisited with general non-hypersingular stress Green’s functions", "subitem_title_language": "en"}]}, "item_type_id": "40001", "owner": "1", "path": ["1670839190650"], "permalink_uri": "https://nied-repo.bosai.go.jp/records/4672", "pubdate": {"attribute_name": "PubDate", "attribute_value": "2023-03-30"}, "publish_date": "2023-03-30", "publish_status": "0", "recid": "4672", "relation": {}, "relation_version_is_last": true, "title": ["Paradox of modelling curved faults revisited with general non-hypersingular stress Green’s functions"], "weko_shared_id": -1}
  1. 防災科研関係論文

Paradox of modelling curved faults revisited with general non-hypersingular stress Green’s functions

https://nied-repo.bosai.go.jp/records/4672
https://nied-repo.bosai.go.jp/records/4672
d9842fb3-47b8-4632-9ae2-f4f8ceb01684
Item type researchmap(1)
公開日 2023-03-30
タイトル
言語 en
タイトル Paradox of modelling curved faults revisited with general non-hypersingular stress Green’s functions
言語
言語 eng
著者 Dye S K Sato

× Dye S K Sato

en Dye S K Sato

Search repository
Pierre Romanet

× Pierre Romanet

en Pierre Romanet

Search repository
Ryosuke Ando

× Ryosuke Ando

en Ryosuke Ando

Search repository
抄録
内容記述タイプ Other
内容記述 <jats:title>SUMMARY</jats:title>
<jats:p>In a dislocation problem, a paradoxical discordance is known to occur between an original smooth curve and an infinitesimally discretized curve. To solve this paradox, we have investigated a non-hypersingular expression for the integral kernel (called the stress Green’s function) which describes the stress field caused by the displacement discontinuity. We first develop a compact alternative expression of the non-hypersingular stress Green’s function for general 2-D and 3-D infinite homogeneous elastic media. We next compute the stress Green’s functions on a curved fault and revisit the paradox. We find that previously obtained non-hypersingular stress Green’s functions are incorrect for curved faults, and that smooth and infinitesimally segmented faults are equivalent. Their compatibility bridges the gap between analytical methods featuring curved faults and numerical methods using subdivided flat patches.</jats:p>
言語 en
書誌情報 en : Geophysical Journal International

巻 223, 号 1, p. 197-210, 発行日 2020-10-01
出版者
言語 en
出版者 Oxford University Press ({OUP})
ISSN
収録物識別子タイプ ISSN
収録物識別子 0956-540X
DOI
関連識別子 10.1093/gji/ggaa172
戻る
0
views
See details
Views

Versions

Ver.1 2023-03-31 02:00:10.803218
Show All versions

エクスポート

OAI-PMH
  • OAI-PMH JPCOAR
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by WEKO3

Change consent settings


Powered by WEKO3

Change consent settings