当サイトでは、より良いサービスを提供するため、クッキーを利用しています。クッキーの使用に同意いただける場合は「同意」ボタンをクリックし、クッキーポリシーについては「詳細を見る」をクリックしてください。詳しくは当サイトの サイトポリシー をご確認ください。

詳細を見る...
ログイン サインアップ
言語:

WEKO3

  • トップ
  • ランキング
To

Field does not validate



インデックスリンク

インデックスツリー

  • RootNode

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

{"_buckets": {"deposit": "ff992f29-e015-4549-8460-efbe441230ca"}, "_deposit": {"id": "4707", "owners": [1], "pid": {"revision_id": 0, "type": "depid", "value": "4707"}, "status": "published"}, "_oai": {"id": "oai:nied-repo.bosai.go.jp:00004707", "sets": []}, "author_link": [], "item_10001_biblio_info_7": {"attribute_name": "書誌情報", "attribute_value_mlt": [{"bibliographicIssueDates": {"bibliographicIssueDate": "2004", "bibliographicIssueDateType": "Issued"}, "bibliographicPageEnd": "466", "bibliographicPageStart": "461", "bibliographic_titles": [{"bibliographic_title": "FIFTH IEEE/ACM INTERNATIONAL WORKSHOP ON GRID COMPUTING, PROCEEDINGS", "bibliographic_titleLang": "en"}]}]}, "item_10001_description_5": {"attribute_name": "抄録", "attribute_value_mlt": [{"subitem_description": "A comprehensive study of the whole petabyte-scale archival data of astronomical observatories has a possibility of new science and new knowledge in the field, while it was not feasible so far due to lack of enough data analysis environment. The Grid Datafarm architecture is designed for global petabyte-scale data-intensive computing, which provides a Grid file system with file replica management for fault tolerance and load balancing, and parallel and distributed data computing support for a set of files, to meet with the requirements of the comprehensive study of the whole archival data.\nIn the paper, we discuss about worldwide parallel and distributed data analysis in the observational astronomical field The archival data is stored, replicated and dispersed in a Gfarm file system. All the astronomical data analysis tools successfully access files in Gfarm file system without any code modification, using a syscall hooking library regardless of file replica locations. Performance evaluation of the parallel data analysis in several ways shows file-affinity process scheduling plays an essential role for scalable and efficient parallel file I/O performance. A data calibration tools shows scalable file I/O performance, and achieved the file I/O performance of 5.9 GB/sec and 4.0 GB/sec for reading and writing FITS files, respectively, using 30 cluster nodes (60 CPUs). On-demand file replica creation mitigates the overhead of access concentration. Another tool shows the performance improvement at a factor of six for reading a shared file by creating file replicas.", "subitem_description_language": "en", "subitem_description_type": "Other"}]}, "item_10001_publisher_8": {"attribute_name": "出版者", "attribute_value_mlt": [{"subitem_publisher": "IEEE COMPUTER SOC", "subitem_publisher_language": "en"}]}, "item_10001_relation_14": {"attribute_name": "DOI", "attribute_value_mlt": [{"subitem_relation_type_id": {"subitem_relation_type_id_text": "10.1109/GRID.2004.47"}}]}, "item_creator": {"attribute_name": "著者", "attribute_type": "creator", "attribute_value_mlt": [{"creatorNames": [{"creatorName": "Naotaka Yamamoto", "creatorNameLang": "en"}]}, {"creatorNames": [{"creatorName": "Osamu Tatebe", "creatorNameLang": "en"}]}, {"creatorNames": [{"creatorName": "Satoshi Sekiguchi", "creatorNameLang": "en"}]}]}, "item_language": {"attribute_name": "言語", "attribute_value_mlt": [{"subitem_language": "eng"}]}, "item_title": "Parallel and distributed astronomical data analysis on grid datafarm", "item_titles": {"attribute_name": "タイトル", "attribute_value_mlt": [{"subitem_title": "Parallel and distributed astronomical data analysis on grid datafarm", "subitem_title_language": "en"}]}, "item_type_id": "40001", "owner": "1", "path": ["1670839190650"], "permalink_uri": "https://nied-repo.bosai.go.jp/records/4707", "pubdate": {"attribute_name": "PubDate", "attribute_value": "2023-03-30"}, "publish_date": "2023-03-30", "publish_status": "0", "recid": "4707", "relation": {}, "relation_version_is_last": true, "title": ["Parallel and distributed astronomical data analysis on grid datafarm"], "weko_shared_id": -1}
  1. 防災科研関係論文

Parallel and distributed astronomical data analysis on grid datafarm

https://nied-repo.bosai.go.jp/records/4707
https://nied-repo.bosai.go.jp/records/4707
7ccdb97b-431b-46a1-8256-adb1a65d2827
Item type researchmap(1)
公開日 2023-03-30
タイトル
言語 en
タイトル Parallel and distributed astronomical data analysis on grid datafarm
言語
言語 eng
著者 Naotaka Yamamoto

× Naotaka Yamamoto

en Naotaka Yamamoto

Search repository
Osamu Tatebe

× Osamu Tatebe

en Osamu Tatebe

Search repository
Satoshi Sekiguchi

× Satoshi Sekiguchi

en Satoshi Sekiguchi

Search repository
抄録
内容記述タイプ Other
内容記述 A comprehensive study of the whole petabyte-scale archival data of astronomical observatories has a possibility of new science and new knowledge in the field, while it was not feasible so far due to lack of enough data analysis environment. The Grid Datafarm architecture is designed for global petabyte-scale data-intensive computing, which provides a Grid file system with file replica management for fault tolerance and load balancing, and parallel and distributed data computing support for a set of files, to meet with the requirements of the comprehensive study of the whole archival data.
In the paper, we discuss about worldwide parallel and distributed data analysis in the observational astronomical field The archival data is stored, replicated and dispersed in a Gfarm file system. All the astronomical data analysis tools successfully access files in Gfarm file system without any code modification, using a syscall hooking library regardless of file replica locations. Performance evaluation of the parallel data analysis in several ways shows file-affinity process scheduling plays an essential role for scalable and efficient parallel file I/O performance. A data calibration tools shows scalable file I/O performance, and achieved the file I/O performance of 5.9 GB/sec and 4.0 GB/sec for reading and writing FITS files, respectively, using 30 cluster nodes (60 CPUs). On-demand file replica creation mitigates the overhead of access concentration. Another tool shows the performance improvement at a factor of six for reading a shared file by creating file replicas.
言語 en
書誌情報 en : FIFTH IEEE/ACM INTERNATIONAL WORKSHOP ON GRID COMPUTING, PROCEEDINGS

p. 461-466, 発行日 2004
出版者
言語 en
出版者 IEEE COMPUTER SOC
DOI
関連識別子 10.1109/GRID.2004.47
戻る
0
views
See details
Views

Versions

Ver.1 2023-03-31 02:01:12.108273
Show All versions

エクスポート

OAI-PMH
  • OAI-PMH JPCOAR
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by WEKO3

Change consent settings


Powered by WEKO3

Change consent settings