当サイトでは、より良いサービスを提供するため、クッキーを利用しています。クッキーの使用に同意いただける場合は「同意」ボタンをクリックし、クッキーポリシーについては「詳細を見る」をクリックしてください。詳しくは当サイトの サイトポリシー をご確認ください。

詳細を見る...
ログイン サインアップ
言語:

WEKO3

  • トップ
  • ランキング
To

Field does not validate



インデックスリンク

インデックスツリー

  • RootNode

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

{"_buckets": {"deposit": "d180c2ae-14f0-4df0-959e-c4383fd9b253"}, "_deposit": {"id": "4736", "owners": [1], "pid": {"revision_id": 0, "type": "depid", "value": "4736"}, "status": "published"}, "_oai": {"id": "oai:nied-repo.bosai.go.jp:00004736", "sets": []}, "author_link": [], "item_10001_biblio_info_7": {"attribute_name": "書誌情報", "attribute_value_mlt": [{"bibliographicIssueDates": {"bibliographicIssueDate": "2017", "bibliographicIssueDateType": "Issued"}, "bibliographicPageEnd": "2778", "bibliographicPageStart": "2772", "bibliographic_titles": [{"bibliographic_title": "2017 PROGRESS IN ELECTROMAGNETICS RESEARCH SYMPOSIUM - SPRING (PIERS)", "bibliographic_titleLang": "en"}]}]}, "item_10001_description_5": {"attribute_name": "抄録", "attribute_value_mlt": [{"subitem_description": "Synthetic Aperture Radar (SAR) sensors onboard space-borne and airborne platforms are useful to survey the land-cover and condition of the earth surface. The Japan Aerospace Exploration Agency (JAXA) has been operating L-band radar systems both on satellites and air-crafts. The Polarimetric and Interferometric Airborne Synthetic Aperture Radar (Pi-SAR) L2 started its operation in 2012, as a successor of Pi-SAR-L (1996-2011). Pi-SAR-L2 carries an L-band radar of 85.0MHz band-width and can acquire images of very high slant-range resolution 1.76m with full (HH, HV, VV, VH) polarizations. In this study, a basic study on backscattering characteristics of a suburban area was carried out using full polarization data acquired by Pi-SAR-L2 flying over Miyagi prefecture, Japan. The texture measures of the SAR data were obtained by the Gray Level Co-occurrence Matrix (GLCM), which is one of the most well-known texture measures in the recent years. The selected major land-cover classes were trees, grasses, roads, water, paddy fields, buildings and solar panels. The result of supervised classification shows that the combined use of the backscattering intensity and their texture measures could obtain higher accuracy than using only the backscattering intensity.", "subitem_description_language": "en", "subitem_description_type": "Other"}]}, "item_10001_publisher_8": {"attribute_name": "出版者", "attribute_value_mlt": [{"subitem_publisher": "IEEE", "subitem_publisher_language": "en"}]}, "item_10001_relation_14": {"attribute_name": "DOI", "attribute_value_mlt": [{"subitem_relation_type_id": {"subitem_relation_type_id_text": "10.1109/PIERS.2017.8262225"}}]}, "item_10001_source_id_9": {"attribute_name": "ISSN", "attribute_value_mlt": [{"subitem_source_identifier": "1931-7360", "subitem_source_identifier_type": "EISSN"}]}, "item_creator": {"attribute_name": "著者", "attribute_type": "creator", "attribute_value_mlt": [{"creatorNames": [{"creatorName": "Fumio Yamazaki", "creatorNameLang": "en"}]}, {"creatorNames": [{"creatorName": "Natsuki Samuta", "creatorNameLang": "en"}]}, {"creatorNames": [{"creatorName": "Wen Liu", "creatorNameLang": "en"}]}]}, "item_language": {"attribute_name": "言語", "attribute_value_mlt": [{"subitem_language": "eng"}]}, "item_title": "Land-cover Classification of Suburban Areas Based on Multi-polarized Airborne SAR Data Using Texture Measures", "item_titles": {"attribute_name": "タイトル", "attribute_value_mlt": [{"subitem_title": "Land-cover Classification of Suburban Areas Based on Multi-polarized Airborne SAR Data Using Texture Measures", "subitem_title_language": "en"}]}, "item_type_id": "40001", "owner": "1", "path": ["1670839190650"], "permalink_uri": "https://nied-repo.bosai.go.jp/records/4736", "pubdate": {"attribute_name": "PubDate", "attribute_value": "2023-03-30"}, "publish_date": "2023-03-30", "publish_status": "0", "recid": "4736", "relation": {}, "relation_version_is_last": true, "title": ["Land-cover Classification of Suburban Areas Based on Multi-polarized Airborne SAR Data Using Texture Measures"], "weko_shared_id": -1}
  1. 防災科研関係論文

Land-cover Classification of Suburban Areas Based on Multi-polarized Airborne SAR Data Using Texture Measures

https://nied-repo.bosai.go.jp/records/4736
https://nied-repo.bosai.go.jp/records/4736
749a164c-467f-4d51-bb6b-f78efc289571
Item type researchmap(1)
公開日 2023-03-30
タイトル
言語 en
タイトル Land-cover Classification of Suburban Areas Based on Multi-polarized Airborne SAR Data Using Texture Measures
言語
言語 eng
著者 Fumio Yamazaki

× Fumio Yamazaki

en Fumio Yamazaki

Search repository
Natsuki Samuta

× Natsuki Samuta

en Natsuki Samuta

Search repository
Wen Liu

× Wen Liu

en Wen Liu

Search repository
抄録
内容記述タイプ Other
内容記述 Synthetic Aperture Radar (SAR) sensors onboard space-borne and airborne platforms are useful to survey the land-cover and condition of the earth surface. The Japan Aerospace Exploration Agency (JAXA) has been operating L-band radar systems both on satellites and air-crafts. The Polarimetric and Interferometric Airborne Synthetic Aperture Radar (Pi-SAR) L2 started its operation in 2012, as a successor of Pi-SAR-L (1996-2011). Pi-SAR-L2 carries an L-band radar of 85.0MHz band-width and can acquire images of very high slant-range resolution 1.76m with full (HH, HV, VV, VH) polarizations. In this study, a basic study on backscattering characteristics of a suburban area was carried out using full polarization data acquired by Pi-SAR-L2 flying over Miyagi prefecture, Japan. The texture measures of the SAR data were obtained by the Gray Level Co-occurrence Matrix (GLCM), which is one of the most well-known texture measures in the recent years. The selected major land-cover classes were trees, grasses, roads, water, paddy fields, buildings and solar panels. The result of supervised classification shows that the combined use of the backscattering intensity and their texture measures could obtain higher accuracy than using only the backscattering intensity.
言語 en
書誌情報 en : 2017 PROGRESS IN ELECTROMAGNETICS RESEARCH SYMPOSIUM - SPRING (PIERS)

p. 2772-2778, 発行日 2017
出版者
言語 en
出版者 IEEE
ISSN
収録物識別子タイプ EISSN
収録物識別子 1931-7360
DOI
関連識別子 10.1109/PIERS.2017.8262225
戻る
0
views
See details
Views

Versions

Ver.1 2023-03-31 02:02:03.102395
Show All versions

エクスポート

OAI-PMH
  • OAI-PMH JPCOAR
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by WEKO3

Change consent settings


Powered by WEKO3

Change consent settings