ログイン サインアップ
言語:

WEKO3

  • トップ
  • ランキング
To
lat lon distance
To

Field does not validate



インデックスリンク

インデックスツリー

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

{"_buckets": {"deposit": "ee3a58aa-2181-40f5-aacd-eabca36df6cd"}, "_deposit": {"id": "4754", "owners": [1], "pid": {"revision_id": 0, "type": "depid", "value": "4754"}, "status": "published"}, "_oai": {"id": "oai:nied-repo.bosai.go.jp:00004754", "sets": []}, "author_link": [], "item_10001_biblio_info_7": {"attribute_name": "書誌情報", "attribute_value_mlt": [{"bibliographicIssueDates": {"bibliographicIssueDate": "2006-07", "bibliographicIssueDateType": "Issued"}, "bibliographicIssueNumber": "1", "bibliographicPageEnd": "308", "bibliographicPageStart": "293", "bibliographicVolumeNumber": "166", "bibliographic_titles": [{"bibliographic_title": "GEOPHYSICAL JOURNAL INTERNATIONAL", "bibliographic_titleLang": "en"}]}]}, "item_10001_description_5": {"attribute_name": "抄録", "attribute_value_mlt": [{"subitem_description": "When high-frequency waves propagate through a randomly inhomogeneous medium, the apparent wave velocity is larger than the spatial average of the velocity distribution. The difference between the two velocities is referred to as the velocity shift. The present study formulates the velocity shift in 2-D anisotropic random media using the Rytov method. Anisotropic random media in (x, z) coordinates are characterized by autocorrelation functions (ACFs) with a long correlation distance along the x-axis and a short correlation distance along the z-axis, where the velocity structure varies smoothly along the x-axis and rapidly along the z-axis. Note that the spatial average values of the velocity distribution along the x-axis and the z-axis are the same. The formulation gives the velocity shift for general types of ACF. An analytic solution is obtained for the case of a Gaussian ACF. To examine the reliability of the Rytov method, the velocity shift is estimated from numerical simulations of wave propagation using Ricker wavelets with dominant frequencies 80 and 40 Hz. The random media are realized with a spatial average velocity of 2700 m s(-1) and an exponential ACF with 5 per cent rms fractional velocity fluctuation, a correlation distance of 80 m along the x-axis and 40 m along the z-axis. Numerical simulations show that waves apparently propagate faster with increasing travel distance, frequency and the angle of incidence measured from the z-axis to the global ray direction. For example, in the case of the 80 Hz Ricker wavelet at a distance of 520 m, the values of the velocity shift are about 0.9 and 0.3 per cent along the x-axis and the z-axis, respectively. The Rytov method quantitatively explains these general tendencies except for short travel distances along the x-axis. The discrepancy at short travel distances could be due to the small-angle scattering approximation and the long travel distance approximation employed in the Rytov method. Observations of P-wave velocity anisotropy have usually been interpreted in terms of preferred orientations of cracks and minerals in past studies. However this study indicates that wave scattering due to anisotropic random media can provide an alternative explanation for those observations.", "subitem_description_language": "en", "subitem_description_type": "Other"}]}, "item_10001_publisher_8": {"attribute_name": "出版者", "attribute_value_mlt": [{"subitem_publisher": "WILEY-BLACKWELL PUBLISHING, INC", "subitem_publisher_language": "en"}]}, "item_10001_relation_14": {"attribute_name": "DOI", "attribute_value_mlt": [{"subitem_relation_type_id": {"subitem_relation_type_id_text": "10.1111/j.1365-246X.2006.02976.x"}}]}, "item_10001_source_id_9": {"attribute_name": "ISSN", "attribute_value_mlt": [{"subitem_source_identifier": "0956-540X", "subitem_source_identifier_type": "ISSN"}]}, "item_creator": {"attribute_name": "著者", "attribute_type": "creator", "attribute_value_mlt": [{"creatorNames": [{"creatorName": "Tatsuhiko Saito", "creatorNameLang": "en"}]}]}, "item_language": {"attribute_name": "言語", "attribute_value_mlt": [{"subitem_language": "eng"}]}, "item_title": "Velocity shift in two-dimensional anisotropic random media using the Rytov method", "item_titles": {"attribute_name": "タイトル", "attribute_value_mlt": [{"subitem_title": "Velocity shift in two-dimensional anisotropic random media using the Rytov method", "subitem_title_language": "en"}]}, "item_type_id": "40001", "owner": "1", "path": ["1670839190650"], "permalink_uri": "https://nied-repo.bosai.go.jp/records/4754", "pubdate": {"attribute_name": "PubDate", "attribute_value": "2023-03-30"}, "publish_date": "2023-03-30", "publish_status": "0", "recid": "4754", "relation": {}, "relation_version_is_last": true, "title": ["Velocity shift in two-dimensional anisotropic random media using the Rytov method"], "weko_shared_id": -1}
  1. 防災科研関係論文

Velocity shift in two-dimensional anisotropic random media using the Rytov method

https://nied-repo.bosai.go.jp/records/4754
https://nied-repo.bosai.go.jp/records/4754
1673b973-b2f1-4526-a48d-202ad812bf28
Item type researchmap(1)
公開日 2023-03-30
タイトル
言語 en
タイトル Velocity shift in two-dimensional anisotropic random media using the Rytov method
言語
言語 eng
著者 Tatsuhiko Saito

× Tatsuhiko Saito

en Tatsuhiko Saito

Search repository
抄録
内容記述タイプ Other
内容記述 When high-frequency waves propagate through a randomly inhomogeneous medium, the apparent wave velocity is larger than the spatial average of the velocity distribution. The difference between the two velocities is referred to as the velocity shift. The present study formulates the velocity shift in 2-D anisotropic random media using the Rytov method. Anisotropic random media in (x, z) coordinates are characterized by autocorrelation functions (ACFs) with a long correlation distance along the x-axis and a short correlation distance along the z-axis, where the velocity structure varies smoothly along the x-axis and rapidly along the z-axis. Note that the spatial average values of the velocity distribution along the x-axis and the z-axis are the same. The formulation gives the velocity shift for general types of ACF. An analytic solution is obtained for the case of a Gaussian ACF. To examine the reliability of the Rytov method, the velocity shift is estimated from numerical simulations of wave propagation using Ricker wavelets with dominant frequencies 80 and 40 Hz. The random media are realized with a spatial average velocity of 2700 m s(-1) and an exponential ACF with 5 per cent rms fractional velocity fluctuation, a correlation distance of 80 m along the x-axis and 40 m along the z-axis. Numerical simulations show that waves apparently propagate faster with increasing travel distance, frequency and the angle of incidence measured from the z-axis to the global ray direction. For example, in the case of the 80 Hz Ricker wavelet at a distance of 520 m, the values of the velocity shift are about 0.9 and 0.3 per cent along the x-axis and the z-axis, respectively. The Rytov method quantitatively explains these general tendencies except for short travel distances along the x-axis. The discrepancy at short travel distances could be due to the small-angle scattering approximation and the long travel distance approximation employed in the Rytov method. Observations of P-wave velocity anisotropy have usually been interpreted in terms of preferred orientations of cracks and minerals in past studies. However this study indicates that wave scattering due to anisotropic random media can provide an alternative explanation for those observations.
言語 en
書誌情報 en : GEOPHYSICAL JOURNAL INTERNATIONAL

巻 166, 号 1, p. 293-308, 発行日 2006-07
出版者
言語 en
出版者 WILEY-BLACKWELL PUBLISHING, INC
ISSN
収録物識別子タイプ ISSN
収録物識別子 0956-540X
DOI
関連識別子 10.1111/j.1365-246X.2006.02976.x
戻る
0
views
See details
Views

Versions

Ver.1 2023-03-31 02:02:33.819928
Show All versions

エクスポート

OAI-PMH
  • OAI-PMH JPCOAR
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by WEKO3

Change consent settings


Powered by WEKO3

Change consent settings