当サイトでは、より良いサービスを提供するため、クッキーを利用しています。クッキーの使用に同意いただける場合は「同意」ボタンをクリックし、クッキーポリシーについては「詳細を見る」をクリックしてください。詳しくは当サイトの サイトポリシー をご確認ください。

詳細を見る...
ログイン サインアップ
言語:

WEKO3

  • トップ
  • ランキング
To

Field does not validate



インデックスリンク

インデックスツリー

  • RootNode

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

{"_buckets": {"deposit": "a75b4cc1-7ea5-4fea-88fe-e8a164740495"}, "_deposit": {"id": "4982", "owners": [1], "pid": {"revision_id": 0, "type": "depid", "value": "4982"}, "status": "published"}, "_oai": {"id": "oai:nied-repo.bosai.go.jp:00004982", "sets": []}, "author_link": [], "item_10001_biblio_info_7": {"attribute_name": "書誌情報", "attribute_value_mlt": [{"bibliographicIssueDates": {"bibliographicIssueDate": "2020-08", "bibliographicIssueDateType": "Issued"}, "bibliographicIssueNumber": "3", "bibliographicPageEnd": "1187", "bibliographicPageStart": "1166", "bibliographicVolumeNumber": "36", "bibliographic_titles": [{"bibliographic_title": "Earthquake Spectra", "bibliographic_titleLang": "en"}]}]}, "item_10001_description_5": {"attribute_name": "抄録", "attribute_value_mlt": [{"subitem_description": "This article presents a method for detecting damaged buildings in the event of an earthquake using machine learning models and aerial photographs. We initially created training data for machine learning models using aerial photographs captured around the town of Mashiki immediately after the main shock of the 2016 Kumamoto earthquake. All buildings are classified into one of the four damage levels by visual interpretation. Subsequently, two damage discrimination models are developed: a bag-of-visual-words model and a model based on a convolutional neural network. Results are compared and validated in terms of accuracy, revealing that the latter model is preferable. Moreover, for the convolutional neural network model, the target areas are expanded and the recalls of damage classification at the four levels range approximately from 66% to 81%.", "subitem_description_language": "en", "subitem_description_type": "Other"}]}, "item_10001_publisher_8": {"attribute_name": "出版者", "attribute_value_mlt": [{"subitem_publisher": "SAGE Publications", "subitem_publisher_language": "en"}]}, "item_10001_relation_14": {"attribute_name": "DOI", "attribute_value_mlt": [{"subitem_relation_type_id": {"subitem_relation_type_id_text": "10.1177/8755293019901309"}}]}, "item_10001_source_id_9": {"attribute_name": "ISSN", "attribute_value_mlt": [{"subitem_source_identifier": "1944-8201", "subitem_source_identifier_type": "EISSN"}]}, "item_creator": {"attribute_name": "著者", "attribute_type": "creator", "attribute_value_mlt": [{"creatorNames": [{"creatorName": "Naito, S.", "creatorNameLang": "en"}]}, {"creatorNames": [{"creatorName": "Tomozawa, H.", "creatorNameLang": "en"}]}, {"creatorNames": [{"creatorName": "Mori, Y.", "creatorNameLang": "en"}]}, {"creatorNames": [{"creatorName": "Nagata, T.", "creatorNameLang": "en"}]}, {"creatorNames": [{"creatorName": "Monma, N.", "creatorNameLang": "en"}]}, {"creatorNames": [{"creatorName": "Nakamura, H.", "creatorNameLang": "en"}]}, {"creatorNames": [{"creatorName": "Fujiwara, H.", "creatorNameLang": "en"}]}, {"creatorNames": [{"creatorName": "Shoji, G.", "creatorNameLang": "en"}]}]}, "item_language": {"attribute_name": "言語", "attribute_value_mlt": [{"subitem_language": "eng"}]}, "item_title": "Building-damage detection method based on machine learning utilizing aerial photographs of the Kumamoto earthquake", "item_titles": {"attribute_name": "タイトル", "attribute_value_mlt": [{"subitem_title": "Building-damage detection method based on machine learning utilizing aerial photographs of the Kumamoto earthquake", "subitem_title_language": "en"}]}, "item_type_id": "40001", "owner": "1", "path": ["1670839190650"], "permalink_uri": "https://nied-repo.bosai.go.jp/records/4982", "pubdate": {"attribute_name": "PubDate", "attribute_value": "2023-03-30"}, "publish_date": "2023-03-30", "publish_status": "0", "recid": "4982", "relation": {}, "relation_version_is_last": true, "title": ["Building-damage detection method based on machine learning utilizing aerial photographs of the Kumamoto earthquake"], "weko_shared_id": -1}
  1. 防災科研関係論文

Building-damage detection method based on machine learning utilizing aerial photographs of the Kumamoto earthquake

https://nied-repo.bosai.go.jp/records/4982
https://nied-repo.bosai.go.jp/records/4982
12f6c9bd-90bd-4bfe-a423-0235d8498050
Item type researchmap(1)
公開日 2023-03-30
タイトル
言語 en
タイトル Building-damage detection method based on machine learning utilizing aerial photographs of the Kumamoto earthquake
言語
言語 eng
著者 Naito, S.

× Naito, S.

en Naito, S.

Search repository
Tomozawa, H.

× Tomozawa, H.

en Tomozawa, H.

Search repository
Mori, Y.

× Mori, Y.

en Mori, Y.

Search repository
Nagata, T.

× Nagata, T.

en Nagata, T.

Search repository
Monma, N.

× Monma, N.

en Monma, N.

Search repository
Nakamura, H.

× Nakamura, H.

en Nakamura, H.

Search repository
Fujiwara, H.

× Fujiwara, H.

en Fujiwara, H.

Search repository
Shoji, G.

× Shoji, G.

en Shoji, G.

Search repository
抄録
内容記述タイプ Other
内容記述 This article presents a method for detecting damaged buildings in the event of an earthquake using machine learning models and aerial photographs. We initially created training data for machine learning models using aerial photographs captured around the town of Mashiki immediately after the main shock of the 2016 Kumamoto earthquake. All buildings are classified into one of the four damage levels by visual interpretation. Subsequently, two damage discrimination models are developed: a bag-of-visual-words model and a model based on a convolutional neural network. Results are compared and validated in terms of accuracy, revealing that the latter model is preferable. Moreover, for the convolutional neural network model, the target areas are expanded and the recalls of damage classification at the four levels range approximately from 66% to 81%.
言語 en
書誌情報 en : Earthquake Spectra

巻 36, 号 3, p. 1166-1187, 発行日 2020-08
出版者
言語 en
出版者 SAGE Publications
ISSN
収録物識別子タイプ EISSN
収録物識別子 1944-8201
DOI
関連識別子 10.1177/8755293019901309
戻る
0
views
See details
Views

Versions

Ver.1 2023-03-31 02:09:26.602266
Show All versions

エクスポート

OAI-PMH
  • OAI-PMH JPCOAR
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by WEKO3

Change consent settings


Powered by WEKO3

Change consent settings