ログイン サインアップ
言語:

WEKO3

  • トップ
  • ランキング
To
lat lon distance
To

Field does not validate



インデックスリンク

インデックスツリー

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

{"_buckets": {"deposit": "ec38ac62-a993-4545-9ff9-45737c741b30"}, "_deposit": {"id": "5358", "owners": [1], "pid": {"revision_id": 0, "type": "depid", "value": "5358"}, "status": "published"}, "_oai": {"id": "oai:nied-repo.bosai.go.jp:00005358", "sets": []}, "author_link": [], "item_10001_biblio_info_7": {"attribute_name": "書誌情報", "attribute_value_mlt": [{"bibliographicIssueDates": {"bibliographicIssueDate": "2020-07-01"}, "bibliographicIssueNumber": "4", "bibliographicPageEnd": "2377", "bibliographicPageStart": "2368", "bibliographicVolumeNumber": "91", "bibliographic_titles": [{"bibliographic_title": "Seismological Research Letters", "bibliographic_titleLang": "en"}]}]}, "item_10001_description_5": {"attribute_name": "抄録", "attribute_value_mlt": [{"subitem_description": "\u003ctitle\u003eAbstract\u003c/title\u003e\n SeisIO for the Julia language is a new geophysical data framework that combines the intuitive syntax of a high-level language with performance comparable to FORTRAN or C. Benchmark comparisons against recent versions of popular programs for seismic data download and analysis demonstrate significant improvements in file read speed and orders-of-magnitude improvements in memory overhead. Because the Julia language natively supports parallel computing with an intuitive syntax, we benchmark test parallel download and processing of multiweek segments of contiguous data from two sets of 10 broadband seismic stations, and find that SeisIO outperforms two popular Python-based tools for data downloads. The current capabilities of SeisIO include file read support for several geophysical data formats, online data access using a variety of services, and optimized versions of several common data processing operations. Tutorial notebooks and extensive documentation are available to improve the user experience. As an accessible example of performant scientific computing for the next generation of researchers, SeisIO offers ease of use and rapid learning without sacrificing computational efficiency.", "subitem_description_language": "en", "subitem_description_type": "Other"}]}, "item_10001_publisher_8": {"attribute_name": "出版者", "attribute_value_mlt": [{"subitem_publisher": "Seismological Society of America (SSA)", "subitem_publisher_language": "en"}]}, "item_10001_relation_14": {"attribute_name": "DOI", "attribute_value_mlt": [{"subitem_relation_type_id": {"subitem_relation_type_id_text": "10.1785/0220190295"}}]}, "item_10001_source_id_9": {"attribute_name": "ISSN", "attribute_value_mlt": [{"subitem_source_identifier": "1938-2057", "subitem_source_identifier_type": "EISSN"}]}, "item_creator": {"attribute_name": "著者", "attribute_type": "creator", "attribute_value_mlt": [{"creatorNames": [{"creatorName": "Joshua P. Jones", "creatorNameLang": "en"}]}, {"creatorNames": [{"creatorName": "Kurama Okubo", "creatorNameLang": "en"}]}, {"creatorNames": [{"creatorName": "Tim Clements", "creatorNameLang": "en"}]}, {"creatorNames": [{"creatorName": "Marine A. Denolle", "creatorNameLang": "en"}]}]}, "item_title": "SeisIO: A Fast, Efficient Geophysical Data Architecture for the Julia Language", "item_titles": {"attribute_name": "タイトル", "attribute_value_mlt": [{"subitem_title": "SeisIO: A Fast, Efficient Geophysical Data Architecture for the Julia Language", "subitem_title_language": "en"}]}, "item_type_id": "40001", "owner": "1", "path": ["1670839190650"], "permalink_uri": "https://nied-repo.bosai.go.jp/records/5358", "pubdate": {"attribute_name": "PubDate", "attribute_value": "2023-03-30"}, "publish_date": "2023-03-30", "publish_status": "0", "recid": "5358", "relation": {}, "relation_version_is_last": true, "title": ["SeisIO: A Fast, Efficient Geophysical Data Architecture for the Julia Language"], "weko_shared_id": -1}
  1. 防災科研関係論文

SeisIO: A Fast, Efficient Geophysical Data Architecture for the Julia Language

https://nied-repo.bosai.go.jp/records/5358
https://nied-repo.bosai.go.jp/records/5358
8f2c412f-a8af-4bfb-82ee-e79a41d5323e
Item type researchmap(1)
公開日 2023-03-30
タイトル
言語 en
タイトル SeisIO: A Fast, Efficient Geophysical Data Architecture for the Julia Language
著者 Joshua P. Jones

× Joshua P. Jones

en Joshua P. Jones

Search repository
Kurama Okubo

× Kurama Okubo

en Kurama Okubo

Search repository
Tim Clements

× Tim Clements

en Tim Clements

Search repository
Marine A. Denolle

× Marine A. Denolle

en Marine A. Denolle

Search repository
抄録
内容記述タイプ Other
内容記述 <title>Abstract</title>
SeisIO for the Julia language is a new geophysical data framework that combines the intuitive syntax of a high-level language with performance comparable to FORTRAN or C. Benchmark comparisons against recent versions of popular programs for seismic data download and analysis demonstrate significant improvements in file read speed and orders-of-magnitude improvements in memory overhead. Because the Julia language natively supports parallel computing with an intuitive syntax, we benchmark test parallel download and processing of multiweek segments of contiguous data from two sets of 10 broadband seismic stations, and find that SeisIO outperforms two popular Python-based tools for data downloads. The current capabilities of SeisIO include file read support for several geophysical data formats, online data access using a variety of services, and optimized versions of several common data processing operations. Tutorial notebooks and extensive documentation are available to improve the user experience. As an accessible example of performant scientific computing for the next generation of researchers, SeisIO offers ease of use and rapid learning without sacrificing computational efficiency.
言語 en
書誌情報 en : Seismological Research Letters

巻 91, 号 4, p. 2368-2377
出版者
言語 en
出版者 Seismological Society of America (SSA)
ISSN
収録物識別子タイプ EISSN
収録物識別子 1938-2057
DOI
関連識別子 10.1785/0220190295
戻る
0
views
See details
Views

Versions

Ver.1 2023-03-31 02:24:04.993646
Show All versions

エクスポート

OAI-PMH
  • OAI-PMH JPCOAR
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by WEKO3

Change consent settings


Powered by WEKO3

Change consent settings