当サイトでは、より良いサービスを提供するため、クッキーを利用しています。クッキーの使用に同意いただける場合は「同意」ボタンをクリックし、クッキーポリシーについては「詳細を見る」をクリックしてください。詳しくは当サイトの サイトポリシー をご確認ください。

詳細を見る...
ログイン サインアップ
言語:

WEKO3

  • トップ
  • ランキング
To

Field does not validate



インデックスリンク

インデックスツリー

  • RootNode

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

{"_buckets": {"deposit": "31835932-f935-447e-be19-48d5c5e1b732"}, "_deposit": {"id": "5359", "owners": [1], "pid": {"revision_id": 0, "type": "depid", "value": "5359"}, "status": "published"}, "_oai": {"id": "oai:nied-repo.bosai.go.jp:00005359", "sets": []}, "author_link": [], "item_10001_biblio_info_7": {"attribute_name": "書誌情報", "attribute_value_mlt": [{"bibliographicIssueDates": {"bibliographicIssueDate": "2021-11-01"}, "bibliographicIssueNumber": "6", "bibliographicPageEnd": "3564", "bibliographicPageStart": "3552", "bibliographicVolumeNumber": "92", "bibliographic_titles": [{"bibliographic_title": "Seismological Research Letters", "bibliographic_titleLang": "en"}]}]}, "item_10001_description_5": {"attribute_name": "抄録", "attribute_value_mlt": [{"subitem_description": "Abstract\n\n Data-driven machine-learning approaches are being increasingly applied to construct empirical ground-motion models (GMMs). It is a standard practice to divide observational records into learning and test datasets to correctly evaluate the predictive performance of a developed model. However, in this study, we show that division based on records or earthquakes is inappropriate for evaluating the generalization performance on recorded sites when GMMs include site-condition proxies as input variables. Complex models exhibit small residuals at sites used in the training process, but exhibit large residuals at new sites owing to overfitting to the trained sites. As a simple solution, we propose a neural network model that has monotonic dependence on some of the input variables. The model successfully obtains the generalization performance on recorded sites, although it lacks ability to represent oversaturation with input variables suggested in extreme ground-motion ranges. Therefore, alternative methods should be investigated to develop robust data-driven models under general conditions. Dividing the sites into learning and test data would play a fundamental role in developing such robust models.", "subitem_description_language": "en", "subitem_description_type": "Other"}]}, "item_10001_publisher_8": {"attribute_name": "出版者", "attribute_value_mlt": [{"subitem_publisher": "Seismological Society of America (SSA)", "subitem_publisher_language": "en"}]}, "item_10001_relation_14": {"attribute_name": "DOI", "attribute_value_mlt": [{"subitem_relation_type_id": {"subitem_relation_type_id_text": "10.1785/0220210099"}}]}, "item_10001_source_id_9": {"attribute_name": "ISSN", "attribute_value_mlt": [{"subitem_source_identifier": "1938-2057", "subitem_source_identifier_type": "EISSN"}]}, "item_creator": {"attribute_name": "著者", "attribute_type": "creator", "attribute_value_mlt": [{"creatorNames": [{"creatorName": "Tomohisa Okazaki", "creatorNameLang": "en"}]}, {"creatorNames": [{"creatorName": "Nobuyuki Morikawa", "creatorNameLang": "en"}]}, {"creatorNames": [{"creatorName": "Hiroyuki Fujiwara", "creatorNameLang": "en"}]}, {"creatorNames": [{"creatorName": "Naonori Ueda", "creatorNameLang": "en"}]}]}, "item_language": {"attribute_name": "言語", "attribute_value_mlt": [{"subitem_language": "eng"}]}, "item_title": "Monotonic Neural Network for Ground-Motion Predictions to Avoid Overfitting to Recorded Sites", "item_titles": {"attribute_name": "タイトル", "attribute_value_mlt": [{"subitem_title": "Monotonic Neural Network for Ground-Motion Predictions to Avoid Overfitting to Recorded Sites", "subitem_title_language": "en"}]}, "item_type_id": "40001", "owner": "1", "path": ["1670839190650"], "permalink_uri": "https://nied-repo.bosai.go.jp/records/5359", "pubdate": {"attribute_name": "PubDate", "attribute_value": "2023-03-30"}, "publish_date": "2023-03-30", "publish_status": "0", "recid": "5359", "relation": {}, "relation_version_is_last": true, "title": ["Monotonic Neural Network for Ground-Motion Predictions to Avoid Overfitting to Recorded Sites"], "weko_shared_id": -1}
  1. 防災科研関係論文

Monotonic Neural Network for Ground-Motion Predictions to Avoid Overfitting to Recorded Sites

https://nied-repo.bosai.go.jp/records/5359
https://nied-repo.bosai.go.jp/records/5359
d8e33117-2278-4e4e-895b-495d43f54681
Item type researchmap(1)
公開日 2023-03-30
タイトル
言語 en
タイトル Monotonic Neural Network for Ground-Motion Predictions to Avoid Overfitting to Recorded Sites
言語
言語 eng
著者 Tomohisa Okazaki

× Tomohisa Okazaki

en Tomohisa Okazaki

Search repository
Nobuyuki Morikawa

× Nobuyuki Morikawa

en Nobuyuki Morikawa

Search repository
Hiroyuki Fujiwara

× Hiroyuki Fujiwara

en Hiroyuki Fujiwara

Search repository
Naonori Ueda

× Naonori Ueda

en Naonori Ueda

Search repository
抄録
内容記述タイプ Other
内容記述 Abstract

Data-driven machine-learning approaches are being increasingly applied to construct empirical ground-motion models (GMMs). It is a standard practice to divide observational records into learning and test datasets to correctly evaluate the predictive performance of a developed model. However, in this study, we show that division based on records or earthquakes is inappropriate for evaluating the generalization performance on recorded sites when GMMs include site-condition proxies as input variables. Complex models exhibit small residuals at sites used in the training process, but exhibit large residuals at new sites owing to overfitting to the trained sites. As a simple solution, we propose a neural network model that has monotonic dependence on some of the input variables. The model successfully obtains the generalization performance on recorded sites, although it lacks ability to represent oversaturation with input variables suggested in extreme ground-motion ranges. Therefore, alternative methods should be investigated to develop robust data-driven models under general conditions. Dividing the sites into learning and test data would play a fundamental role in developing such robust models.
言語 en
書誌情報 en : Seismological Research Letters

巻 92, 号 6, p. 3552-3564
出版者
言語 en
出版者 Seismological Society of America (SSA)
ISSN
収録物識別子タイプ EISSN
収録物識別子 1938-2057
DOI
関連識別子 10.1785/0220210099
戻る
0
views
See details
Views

Versions

Ver.1 2023-03-31 02:24:09.204308
Show All versions

エクスポート

OAI-PMH
  • OAI-PMH JPCOAR
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by WEKO3

Change consent settings


Powered by WEKO3

Change consent settings