当サイトでは、より良いサービスを提供するため、クッキーを利用しています。クッキーの使用に同意いただける場合は「同意」ボタンをクリックし、クッキーポリシーについては「詳細を見る」をクリックしてください。詳しくは当サイトの サイトポリシー をご確認ください。

詳細を見る...
ログイン サインアップ
言語:

WEKO3

  • トップ
  • ランキング
To

Field does not validate



インデックスリンク

インデックスツリー

  • RootNode

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

{"_buckets": {"deposit": "f0f7b433-1a07-4a38-864f-42773a74dc27"}, "_deposit": {"id": "5783", "owners": [1], "pid": {"revision_id": 0, "type": "depid", "value": "5783"}, "status": "published"}, "_oai": {"id": "oai:nied-repo.bosai.go.jp:00005783", "sets": []}, "author_link": [], "item_10001_biblio_info_7": {"attribute_name": "書誌情報", "attribute_value_mlt": [{"bibliographicIssueDates": {"bibliographicIssueDate": "2021-03", "bibliographicIssueDateType": "Issued"}, "bibliographicIssueNumber": "5", "bibliographicPageEnd": "588", "bibliographicPageStart": "588", "bibliographicVolumeNumber": "13", "bibliographic_titles": [{"bibliographic_title": "WATER", "bibliographic_titleLang": "en"}]}]}, "item_10001_description_5": {"attribute_name": "抄録", "attribute_value_mlt": [{"subitem_description": "Near real-time rainfall monitoring at local scale is essential for urban flood risk mitigation. Previous research on precipitation visual effects supports the idea of vision-based rain sensors, but tends to be device-specific. We aimed to use different available photographing devices to develop a dense network of low-cost sensors. Using Transfer Learning with a Convolutional Neural Network, the rainfall detection was performed on single images taken in heterogeneous conditions by static or moving cameras without adjusted parameters. The chosen images encompass unconstrained verisimilar settings of the sources: Image2Weather dataset, dash-cams in the Tokyo Metropolitan area and experiments in the NIED Large-scale Rainfall Simulator. The model reached a test accuracy of 85.28% and an F1 score of 0.86. The applicability to real-world scenarios was proven with the experimentation with a pre-existing surveillance camera in Matera (Italy), obtaining an accuracy of 85.13% and an F1 score of 0.85. This model can be easily integrated into warning systems to automatically monitor the onset and end of rain-related events, exploiting pre-existing devices with a parsimonious use of economic and computational resources. The limitation is intrinsic to the outputs (detection without measurement). Future work concerns the development of a CNN based on the proposed methodology to quantify the precipitation intensity.", "subitem_description_language": "en", "subitem_description_type": "Other"}]}, "item_10001_publisher_8": {"attribute_name": "出版者", "attribute_value_mlt": [{"subitem_publisher": "MDPI", "subitem_publisher_language": "en"}]}, "item_10001_relation_14": {"attribute_name": "DOI", "attribute_value_mlt": [{"subitem_relation_type_id": {"subitem_relation_type_id_text": "10.3390/w13050588"}}]}, "item_10001_source_id_9": {"attribute_name": "ISSN", "attribute_value_mlt": [{"subitem_source_identifier": "2073-4441", "subitem_source_identifier_type": "EISSN"}]}, "item_creator": {"attribute_name": "著者", "attribute_type": "creator", "attribute_value_mlt": [{"creatorNames": [{"creatorName": "Nicla Maria Notarangelo", "creatorNameLang": "en"}]}, {"creatorNames": [{"creatorName": "Kohin Hirano", "creatorNameLang": "en"}]}, {"creatorNames": [{"creatorName": "Raffaele Albano", "creatorNameLang": "en"}]}, {"creatorNames": [{"creatorName": "Aurelia Sole", "creatorNameLang": "en"}]}]}, "item_language": {"attribute_name": "言語", "attribute_value_mlt": [{"subitem_language": "eng"}]}, "item_title": "Transfer Learning with Convolutional Neural Networks for Rainfall Detection in Single Images", "item_titles": {"attribute_name": "タイトル", "attribute_value_mlt": [{"subitem_title": "Transfer Learning with Convolutional Neural Networks for Rainfall Detection in Single Images", "subitem_title_language": "en"}]}, "item_type_id": "40001", "owner": "1", "path": ["1670839190650"], "permalink_uri": "https://nied-repo.bosai.go.jp/records/5783", "pubdate": {"attribute_name": "PubDate", "attribute_value": "2023-03-30"}, "publish_date": "2023-03-30", "publish_status": "0", "recid": "5783", "relation": {}, "relation_version_is_last": true, "title": ["Transfer Learning with Convolutional Neural Networks for Rainfall Detection in Single Images"], "weko_shared_id": -1}
  1. 防災科研関係論文

Transfer Learning with Convolutional Neural Networks for Rainfall Detection in Single Images

https://nied-repo.bosai.go.jp/records/5783
https://nied-repo.bosai.go.jp/records/5783
074a2a7f-5522-41d2-84fc-c8b65d4768c5
Item type researchmap(1)
公開日 2023-03-30
タイトル
言語 en
タイトル Transfer Learning with Convolutional Neural Networks for Rainfall Detection in Single Images
言語
言語 eng
著者 Nicla Maria Notarangelo

× Nicla Maria Notarangelo

en Nicla Maria Notarangelo

Search repository
Kohin Hirano

× Kohin Hirano

en Kohin Hirano

Search repository
Raffaele Albano

× Raffaele Albano

en Raffaele Albano

Search repository
Aurelia Sole

× Aurelia Sole

en Aurelia Sole

Search repository
抄録
内容記述タイプ Other
内容記述 Near real-time rainfall monitoring at local scale is essential for urban flood risk mitigation. Previous research on precipitation visual effects supports the idea of vision-based rain sensors, but tends to be device-specific. We aimed to use different available photographing devices to develop a dense network of low-cost sensors. Using Transfer Learning with a Convolutional Neural Network, the rainfall detection was performed on single images taken in heterogeneous conditions by static or moving cameras without adjusted parameters. The chosen images encompass unconstrained verisimilar settings of the sources: Image2Weather dataset, dash-cams in the Tokyo Metropolitan area and experiments in the NIED Large-scale Rainfall Simulator. The model reached a test accuracy of 85.28% and an F1 score of 0.86. The applicability to real-world scenarios was proven with the experimentation with a pre-existing surveillance camera in Matera (Italy), obtaining an accuracy of 85.13% and an F1 score of 0.85. This model can be easily integrated into warning systems to automatically monitor the onset and end of rain-related events, exploiting pre-existing devices with a parsimonious use of economic and computational resources. The limitation is intrinsic to the outputs (detection without measurement). Future work concerns the development of a CNN based on the proposed methodology to quantify the precipitation intensity.
言語 en
書誌情報 en : WATER

巻 13, 号 5, p. 588-588, 発行日 2021-03
出版者
言語 en
出版者 MDPI
ISSN
収録物識別子タイプ EISSN
収録物識別子 2073-4441
DOI
関連識別子 10.3390/w13050588
戻る
0
views
See details
Views

Versions

Ver.1 2023-03-31 02:42:13.105981
Show All versions

エクスポート

OAI-PMH
  • OAI-PMH JPCOAR
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by WEKO3

Change consent settings


Powered by WEKO3

Change consent settings