当サイトでは、より良いサービスを提供するため、クッキーを利用しています。クッキーの使用に同意いただける場合は「同意」ボタンをクリックし、クッキーポリシーについては「詳細を見る」をクリックしてください。詳しくは当サイトの サイトポリシー をご確認ください。

詳細を見る...
ログイン サインアップ
言語:

WEKO3

  • トップ
  • ランキング
To

Field does not validate



インデックスリンク

インデックスツリー

  • RootNode

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

{"_buckets": {"deposit": "6b5b48e9-6302-4b9d-bc57-dc056c5e7d3c"}, "_deposit": {"created_by": 10, "id": "6006", "owners": [10], "pid": {"revision_id": 0, "type": "depid", "value": "6006"}, "status": "published"}, "_oai": {"id": "oai:nied-repo.bosai.go.jp:00006006", "sets": []}, "author_link": [], "item_10001_biblio_info_7": {"attribute_name": "書誌情報", "attribute_value_mlt": [{"bibliographicIssueDates": {"bibliographicIssueDate": "2022-12-01", "bibliographicIssueDateType": "Issued"}, "bibliographicIssueNumber": "7", "bibliographicPageEnd": "1149", "bibliographicPageStart": "1140", "bibliographicVolumeNumber": "17", "bibliographic_titles": [{"bibliographic_title": "Journal of Disaster Research", "bibliographic_titleLang": "en"}]}]}, "item_10001_description_5": {"attribute_name": "抄録", "attribute_value_mlt": [{"subitem_description": "With the accumulation of meteorological big data, data-driven models for short-term precipitation forecasting have shown increasing promise. We focus on Koopman operator analysis, which is a data-driven scheme to discover governing laws in observed data. We propose a method to apply this scheme to phenomena accompanying advection currents such as precipitation. The proposed method decomposes time evolutions of the phenomena between advection currents under a velocity field and changes in physical quantities under Lagrangian coordinates. The advection currents are estimated by kinematic analysis, and the changes in physical quantities are estimated by Koopman operator analysis. The proposed method is applied to actual precipitation distribution data, and the results show that the development and decay of precipitation are properly captured relative to conventional methods and that stable predictions over long periods are possible.", "subitem_description_language": "en", "subitem_description_type": "Other"}]}, "item_10001_publisher_8": {"attribute_name": "出版者", "attribute_value_mlt": [{"subitem_publisher": "Fuji Technology Press Ltd.", "subitem_publisher_language": "en"}]}, "item_10001_relation_14": {"attribute_name": "DOI", "attribute_value_mlt": [{"subitem_relation_type_id": {"subitem_relation_type_id_text": "10.20965/jdr.2022.p1140"}}]}, "item_10001_source_id_9": {"attribute_name": "ISSN", "attribute_value_mlt": [{"subitem_source_identifier": "1883-8030", "subitem_source_identifier_type": "EISSN"}]}, "item_creator": {"attribute_name": "著者", "attribute_type": "creator", "attribute_value_mlt": [{"creatorNames": [{"creatorName": "Shitao Zheng", "creatorNameLang": "en"}]}, {"creatorNames": [{"creatorName": "Takashi Miyamoto", "creatorNameLang": "en"}]}, {"creatorNames": [{"creatorName": "Koyuru Iwanami", "creatorNameLang": "en"}]}, {"creatorNames": [{"creatorName": "Shingo Shimizu", "creatorNameLang": "en"}]}, {"creatorNames": [{"creatorName": "Ryohei Kato", "creatorNameLang": "en"}]}]}, "item_language": {"attribute_name": "言語", "attribute_value_mlt": [{"subitem_language": "eng"}]}, "item_title": "Hybrid Scheme of Kinematic Analysis and Lagrangian Koopman Operator Analysis for Short-Term Precipitation Forecasting", "item_titles": {"attribute_name": "タイトル", "attribute_value_mlt": [{"subitem_title": "Hybrid Scheme of Kinematic Analysis and Lagrangian Koopman Operator Analysis for Short-Term Precipitation Forecasting", "subitem_title_language": "en"}]}, "item_type_id": "40001", "owner": "10", "path": ["1670839190650"], "permalink_uri": "https://nied-repo.bosai.go.jp/records/6006", "pubdate": {"attribute_name": "PubDate", "attribute_value": "2024-05-27"}, "publish_date": "2024-05-27", "publish_status": "0", "recid": "6006", "relation": {}, "relation_version_is_last": true, "title": ["Hybrid Scheme of Kinematic Analysis and Lagrangian Koopman Operator Analysis for Short-Term Precipitation Forecasting"], "weko_shared_id": -1}
  1. 防災科研関係論文

Hybrid Scheme of Kinematic Analysis and Lagrangian Koopman Operator Analysis for Short-Term Precipitation Forecasting

https://nied-repo.bosai.go.jp/records/6006
https://nied-repo.bosai.go.jp/records/6006
2a25c0e5-0002-49c8-8854-2709f7efbca3
Item type researchmap(1)
公開日 2024-05-27
タイトル
言語 en
タイトル Hybrid Scheme of Kinematic Analysis and Lagrangian Koopman Operator Analysis for Short-Term Precipitation Forecasting
言語
言語 eng
著者 Shitao Zheng

× Shitao Zheng

en Shitao Zheng

Search repository
Takashi Miyamoto

× Takashi Miyamoto

en Takashi Miyamoto

Search repository
Koyuru Iwanami

× Koyuru Iwanami

en Koyuru Iwanami

Search repository
Shingo Shimizu

× Shingo Shimizu

en Shingo Shimizu

Search repository
Ryohei Kato

× Ryohei Kato

en Ryohei Kato

Search repository
抄録
内容記述タイプ Other
内容記述 With the accumulation of meteorological big data, data-driven models for short-term precipitation forecasting have shown increasing promise. We focus on Koopman operator analysis, which is a data-driven scheme to discover governing laws in observed data. We propose a method to apply this scheme to phenomena accompanying advection currents such as precipitation. The proposed method decomposes time evolutions of the phenomena between advection currents under a velocity field and changes in physical quantities under Lagrangian coordinates. The advection currents are estimated by kinematic analysis, and the changes in physical quantities are estimated by Koopman operator analysis. The proposed method is applied to actual precipitation distribution data, and the results show that the development and decay of precipitation are properly captured relative to conventional methods and that stable predictions over long periods are possible.
言語 en
書誌情報 en : Journal of Disaster Research

巻 17, 号 7, p. 1140-1149, 発行日 2022-12-01
出版者
言語 en
出版者 Fuji Technology Press Ltd.
ISSN
収録物識別子タイプ EISSN
収録物識別子 1883-8030
DOI
関連識別子 10.20965/jdr.2022.p1140
戻る
0
views
See details
Views

Versions

Ver.1 2023-04-10 03:02:49.095775
Show All versions

エクスポート

OAI-PMH
  • OAI-PMH JPCOAR
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by WEKO3

Change consent settings


Powered by WEKO3

Change consent settings