当サイトでは、より良いサービスを提供するため、クッキーを利用しています。クッキーの使用に同意いただける場合は「同意」ボタンをクリックし、クッキーポリシーについては「詳細を見る」をクリックしてください。詳しくは当サイトの サイトポリシー をご確認ください。

詳細を見る...
ログイン サインアップ
言語:

WEKO3

  • トップ
  • ランキング
To

Field does not validate



インデックスリンク

インデックスツリー

  • RootNode

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

{"_buckets": {"deposit": "9ab11579-b2a5-4678-b69f-cac382ae1870"}, "_deposit": {"created_by": 7, "id": "6372", "owners": [7], "pid": {"revision_id": 0, "type": "depid", "value": "6372"}, "status": "published"}, "_oai": {"id": "oai:nied-repo.bosai.go.jp:00006372", "sets": []}, "author_link": [], "item_10001_biblio_info_7": {"attribute_name": "書誌情報", "attribute_value_mlt": [{"bibliographicIssueDates": {"bibliographicIssueDate": "2018", "bibliographicIssueDateType": "Issued"}, "bibliographicPageEnd": "99", "bibliographicPageStart": "81", "bibliographicVolumeNumber": "10876", "bibliographic_titles": [{"bibliographic_title": "HIGH PERFORMANCE COMPUTING, ISC HIGH PERFORMANCE 2018", "bibliographic_titleLang": "en"}]}]}, "item_10001_description_5": {"attribute_name": "抄録", "attribute_value_mlt": [{"subitem_description": "Next-generation supercomputers are expected to consume tens of MW of electric power. The power is expected to instantaneously fluctuate between several MW to tens of MW during their execution. This fluctuation can cause voltage drops in regional power grids and affect the operation of chillers and generators in the computer\u0027s facility. Predicting such fluctuations in advance can aid the safe operation of power grids and facility. Because abrupt fluctuations and a high average of consumed power are application-specific features, it is important to identify an application before job execution. This paper provides a methodology for classifying executed jobs into applications. By this method, various statistics for each application such as the number of executions, runtime, resource usage, and power consumption can be examined. To estimate the power consumed because of job execution, we propose a method to predict application characteristics using submitted job scripts. We demonstrate that 328 kinds of applications are executed in 273,121 jobs and that the application can be predicted with an accuracy of approximately 92%.", "subitem_description_language": "en", "subitem_description_type": "Other"}]}, "item_10001_publisher_8": {"attribute_name": "出版者", "attribute_value_mlt": [{"subitem_publisher": "SPRINGER INTERNATIONAL PUBLISHING AG", "subitem_publisher_language": "en"}]}, "item_10001_relation_14": {"attribute_name": "DOI", "attribute_value_mlt": [{"subitem_relation_type_id": {"subitem_relation_type_id_text": "10.1007/978-3-319-92040-5_5"}}]}, "item_10001_source_id_9": {"attribute_name": "ISSN", "attribute_value_mlt": [{"subitem_source_identifier": "1611-3349", "subitem_source_identifier_type": "EISSN"}]}, "item_creator": {"attribute_name": "著者", "attribute_type": "creator", "attribute_value_mlt": [{"creatorNames": [{"creatorName": "Keiji Yamamoto", "creatorNameLang": "en"}]}, {"creatorNames": [{"creatorName": "Yuichi Tsujita", "creatorNameLang": "en"}]}, {"creatorNames": [{"creatorName": "Atsuya Uno", "creatorNameLang": "en"}]}]}, "item_language": {"attribute_name": "言語", "attribute_value_mlt": [{"subitem_language": "eng"}]}, "item_title": "Classifying Jobs and Predicting Applications in HPC Systems", "item_titles": {"attribute_name": "タイトル", "attribute_value_mlt": [{"subitem_title": "Classifying Jobs and Predicting Applications in HPC Systems", "subitem_title_language": "en"}]}, "item_type_id": "40001", "owner": "7", "path": ["1670839190650"], "permalink_uri": "https://nied-repo.bosai.go.jp/records/6372", "pubdate": {"attribute_name": "PubDate", "attribute_value": "2023-09-20"}, "publish_date": "2023-09-20", "publish_status": "0", "recid": "6372", "relation": {}, "relation_version_is_last": true, "title": ["Classifying Jobs and Predicting Applications in HPC Systems"], "weko_shared_id": -1}
  1. 防災科研関係論文

Classifying Jobs and Predicting Applications in HPC Systems

https://nied-repo.bosai.go.jp/records/6372
https://nied-repo.bosai.go.jp/records/6372
6612ad82-13fd-4f5f-9778-b02984f0cf80
Item type researchmap(1)
公開日 2023-09-20
タイトル
言語 en
タイトル Classifying Jobs and Predicting Applications in HPC Systems
言語
言語 eng
著者 Keiji Yamamoto

× Keiji Yamamoto

en Keiji Yamamoto

Search repository
Yuichi Tsujita

× Yuichi Tsujita

en Yuichi Tsujita

Search repository
Atsuya Uno

× Atsuya Uno

en Atsuya Uno

Search repository
抄録
内容記述タイプ Other
内容記述 Next-generation supercomputers are expected to consume tens of MW of electric power. The power is expected to instantaneously fluctuate between several MW to tens of MW during their execution. This fluctuation can cause voltage drops in regional power grids and affect the operation of chillers and generators in the computer's facility. Predicting such fluctuations in advance can aid the safe operation of power grids and facility. Because abrupt fluctuations and a high average of consumed power are application-specific features, it is important to identify an application before job execution. This paper provides a methodology for classifying executed jobs into applications. By this method, various statistics for each application such as the number of executions, runtime, resource usage, and power consumption can be examined. To estimate the power consumed because of job execution, we propose a method to predict application characteristics using submitted job scripts. We demonstrate that 328 kinds of applications are executed in 273,121 jobs and that the application can be predicted with an accuracy of approximately 92%.
言語 en
書誌情報 en : HIGH PERFORMANCE COMPUTING, ISC HIGH PERFORMANCE 2018

巻 10876, p. 81-99, 発行日 2018
出版者
言語 en
出版者 SPRINGER INTERNATIONAL PUBLISHING AG
ISSN
収録物識別子タイプ EISSN
収録物識別子 1611-3349
DOI
関連識別子 10.1007/978-3-319-92040-5_5
戻る
0
views
See details
Views

Versions

Ver.1 2023-09-20 08:09:35.289476
Show All versions

エクスポート

OAI-PMH
  • OAI-PMH JPCOAR
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by WEKO3

Change consent settings


Powered by WEKO3

Change consent settings