当サイトでは、より良いサービスを提供するため、クッキーを利用しています。クッキーの使用に同意いただける場合は「同意」ボタンをクリックし、クッキーポリシーについては「詳細を見る」をクリックしてください。詳しくは当サイトの サイトポリシー をご確認ください。

詳細を見る...
ログイン サインアップ
言語:

WEKO3

  • トップ
  • ランキング
To

Field does not validate



インデックスリンク

インデックスツリー

  • RootNode

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

{"_buckets": {"deposit": "c4f06f07-dac7-4ff6-b67b-ee3406b46f33"}, "_deposit": {"created_by": 7, "id": "6404", "owners": [7], "pid": {"revision_id": 0, "type": "depid", "value": "6404"}, "status": "published"}, "_oai": {"id": "oai:nied-repo.bosai.go.jp:00006404", "sets": []}, "author_link": [], "item_10001_biblio_info_7": {"attribute_name": "書誌情報", "attribute_value_mlt": [{"bibliographicIssueDates": {"bibliographicIssueDate": "2023-08-18", "bibliographicIssueDateType": "Issued"}, "bibliographicPageStart": "125", "bibliographicVolumeNumber": "75", "bibliographic_titles": [{"bibliographic_title": "Earth, Planets and Space", "bibliographic_titleLang": "ja"}, {"bibliographic_title": "Earth, Planets and Space", "bibliographic_titleLang": "en"}]}]}, "item_10001_description_5": {"attribute_name": "抄録", "attribute_value_mlt": [{"subitem_description": "The source imaging for offshore earthquakes using terrestrial geodetic data has a limited estimation performance due to the low data resolution. One approach to overcome this limitation is the use of seafloor geodetic data. In this study, we focus on tsunami-source data, which is the spatial distribution of vertical crustal displacements above the source area and can be derived from tsunami waveform records. We evaluate how the use of this spatial seafloor geodetic data improves the estimation of a rectangular fault model. Here, the fault model of the 2016 off-Fukushima earthquake in Japan, which was a shallow intraplate earthquake (Mw 7.0), was estimated by three inversions: terrestrial Global Navigation Satellite System (GNSS) data only, tsunami-source data only, and a combination of the GNSS data and tsunami-source data. A Bayesian inversion approach was used to understand the distribution of the estimated fault parameters and their relationship. The results indicated that the terrestrial GNSS data have a low resolution for the analysis of the offshore earthquake, which resulted in a biased solution with large uncertainty. Conversely, the use of tsunami-source data significantly improved the resolution and reliability of source imaging and reduced the dependency among fault parameters. These results suggested that the high-spatial-resolution information of tsunami source is a powerful tool in source imaging of offshore shallow earthquakes. Moreover, the combined use of the two different geodetic data leads to a more robust estimation of fault parameters. We believe that the use of tsunami-source data is useful, not only for the post hoc source analysis, but also for estimating an earthquake rupture area just after a large earthquake, where GNSS data are currently used.", "subitem_description_language": "ja", "subitem_description_type": "Other"}, {"subitem_description": "The source imaging for offshore earthquakes using terrestrial geodetic data has a limited estimation performance due to the low data resolution. One approach to overcome this limitation is the use of seafloor geodetic data. In this study, we focus on tsunami-source data, which is the spatial distribution of vertical crustal displacements above the source area and can be derived from tsunami waveform records. We evaluate how the use of this spatial seafloor geodetic data improves the estimation of a rectangular fault model. Here, the fault model of the 2016 off-Fukushima earthquake in Japan, which was a shallow intraplate earthquake (Mw 7.0), was estimated by three inversions: terrestrial Global Navigation Satellite System (GNSS) data only, tsunami-source data only, and a combination of the GNSS data and tsunami-source data. A Bayesian inversion approach was used to understand the distribution of the estimated fault parameters and their relationship. The results indicated that the terrestrial GNSS data have a low resolution for the analysis of the offshore earthquake, which resulted in a biased solution with large uncertainty. Conversely, the use of tsunami-source data significantly improved the resolution and reliability of source imaging and reduced the dependency among fault parameters. These results suggested that the high-spatial-resolution information of tsunami source is a powerful tool in source imaging of offshore shallow earthquakes. Moreover, the combined use of the two different geodetic data leads to a more robust estimation of fault parameters. We believe that the use of tsunami-source data is useful, not only for the post hoc source analysis, but also for estimating an earthquake rupture area just after a large earthquake, where GNSS data are currently used.", "subitem_description_language": "en", "subitem_description_type": "Other"}]}, "item_10001_relation_14": {"attribute_name": "DOI", "attribute_value_mlt": [{"subitem_relation_type_id": {"subitem_relation_type_id_text": "10.1186/s40623-023-01878-5"}}]}, "item_creator": {"attribute_name": "著者", "attribute_type": "creator", "attribute_value_mlt": [{"creatorNames": [{"creatorName": "Hisahiko Kubo", "creatorNameLang": "ja"}, {"creatorName": "Hisahiko Kubo", "creatorNameLang": "en"}]}, {"creatorNames": [{"creatorName": "Tatsuya Kubota", "creatorNameLang": "ja"}, {"creatorName": "Tatsuya Kubota", "creatorNameLang": "en"}]}, {"creatorNames": [{"creatorName": "Wataru Suzuki", "creatorNameLang": "ja"}, {"creatorName": "Wataru Suzuki", "creatorNameLang": "en"}]}, {"creatorNames": [{"creatorName": "Takeshi Nakamura", "creatorNameLang": "ja"}, {"creatorName": "Takeshi Nakamura", "creatorNameLang": "en"}]}]}, "item_language": {"attribute_name": "言語", "attribute_value_mlt": [{"subitem_language": "eng"}]}, "item_title": "On the use of tsunami-source data for high-resolution fault imaging of offshore earthquakes", "item_titles": {"attribute_name": "タイトル", "attribute_value_mlt": [{"subitem_title": "On the use of tsunami-source data for high-resolution fault imaging of offshore earthquakes", "subitem_title_language": "ja"}, {"subitem_title": "On the use of tsunami-source data for high-resolution fault imaging of offshore earthquakes", "subitem_title_language": "en"}]}, "item_type_id": "40001", "owner": "7", "path": ["1670839190650"], "permalink_uri": "https://nied-repo.bosai.go.jp/records/6404", "pubdate": {"attribute_name": "PubDate", "attribute_value": "2023-09-20"}, "publish_date": "2023-09-20", "publish_status": "0", "recid": "6404", "relation": {}, "relation_version_is_last": true, "title": ["On the use of tsunami-source data for high-resolution fault imaging of offshore earthquakes"], "weko_shared_id": -1}
  1. 防災科研関係論文

On the use of tsunami-source data for high-resolution fault imaging of offshore earthquakes

https://nied-repo.bosai.go.jp/records/6404
https://nied-repo.bosai.go.jp/records/6404
194698b2-004d-449d-b5e7-4790407b5101
Item type researchmap(1)
公開日 2023-09-20
タイトル
言語 ja
タイトル On the use of tsunami-source data for high-resolution fault imaging of offshore earthquakes
タイトル
言語 en
タイトル On the use of tsunami-source data for high-resolution fault imaging of offshore earthquakes
言語
言語 eng
著者 Hisahiko Kubo

× Hisahiko Kubo

ja Hisahiko Kubo

en Hisahiko Kubo

Search repository
Tatsuya Kubota

× Tatsuya Kubota

ja Tatsuya Kubota

en Tatsuya Kubota

Search repository
Wataru Suzuki

× Wataru Suzuki

ja Wataru Suzuki

en Wataru Suzuki

Search repository
Takeshi Nakamura

× Takeshi Nakamura

ja Takeshi Nakamura

en Takeshi Nakamura

Search repository
抄録
内容記述タイプ Other
内容記述 The source imaging for offshore earthquakes using terrestrial geodetic data has a limited estimation performance due to the low data resolution. One approach to overcome this limitation is the use of seafloor geodetic data. In this study, we focus on tsunami-source data, which is the spatial distribution of vertical crustal displacements above the source area and can be derived from tsunami waveform records. We evaluate how the use of this spatial seafloor geodetic data improves the estimation of a rectangular fault model. Here, the fault model of the 2016 off-Fukushima earthquake in Japan, which was a shallow intraplate earthquake (Mw 7.0), was estimated by three inversions: terrestrial Global Navigation Satellite System (GNSS) data only, tsunami-source data only, and a combination of the GNSS data and tsunami-source data. A Bayesian inversion approach was used to understand the distribution of the estimated fault parameters and their relationship. The results indicated that the terrestrial GNSS data have a low resolution for the analysis of the offshore earthquake, which resulted in a biased solution with large uncertainty. Conversely, the use of tsunami-source data significantly improved the resolution and reliability of source imaging and reduced the dependency among fault parameters. These results suggested that the high-spatial-resolution information of tsunami source is a powerful tool in source imaging of offshore shallow earthquakes. Moreover, the combined use of the two different geodetic data leads to a more robust estimation of fault parameters. We believe that the use of tsunami-source data is useful, not only for the post hoc source analysis, but also for estimating an earthquake rupture area just after a large earthquake, where GNSS data are currently used.
言語 ja
抄録
内容記述タイプ Other
内容記述 The source imaging for offshore earthquakes using terrestrial geodetic data has a limited estimation performance due to the low data resolution. One approach to overcome this limitation is the use of seafloor geodetic data. In this study, we focus on tsunami-source data, which is the spatial distribution of vertical crustal displacements above the source area and can be derived from tsunami waveform records. We evaluate how the use of this spatial seafloor geodetic data improves the estimation of a rectangular fault model. Here, the fault model of the 2016 off-Fukushima earthquake in Japan, which was a shallow intraplate earthquake (Mw 7.0), was estimated by three inversions: terrestrial Global Navigation Satellite System (GNSS) data only, tsunami-source data only, and a combination of the GNSS data and tsunami-source data. A Bayesian inversion approach was used to understand the distribution of the estimated fault parameters and their relationship. The results indicated that the terrestrial GNSS data have a low resolution for the analysis of the offshore earthquake, which resulted in a biased solution with large uncertainty. Conversely, the use of tsunami-source data significantly improved the resolution and reliability of source imaging and reduced the dependency among fault parameters. These results suggested that the high-spatial-resolution information of tsunami source is a powerful tool in source imaging of offshore shallow earthquakes. Moreover, the combined use of the two different geodetic data leads to a more robust estimation of fault parameters. We believe that the use of tsunami-source data is useful, not only for the post hoc source analysis, but also for estimating an earthquake rupture area just after a large earthquake, where GNSS data are currently used.
言語 en
書誌情報 ja : Earth, Planets and Space
en : Earth, Planets and Space

巻 75, p. 125, 発行日 2023-08-18
DOI
関連識別子 10.1186/s40623-023-01878-5
戻る
0
views
See details
Views

Versions

Ver.1 2023-09-20 08:10:43.146519
Show All versions

エクスポート

OAI-PMH
  • OAI-PMH JPCOAR
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by WEKO3

Change consent settings


Powered by WEKO3

Change consent settings