当サイトでは、より良いサービスを提供するため、クッキーを利用しています。クッキーの使用に同意いただける場合は「同意」ボタンをクリックし、クッキーポリシーについては「詳細を見る」をクリックしてください。詳しくは当サイトの サイトポリシー をご確認ください。

詳細を見る...
ログイン サインアップ
言語:

WEKO3

  • トップ
  • ランキング
To

Field does not validate



インデックスリンク

インデックスツリー

  • RootNode

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

{"_buckets": {"deposit": "164975eb-3fd8-407d-b15b-da5da41f565f"}, "_deposit": {"created_by": 7, "id": "6583", "owners": [7], "pid": {"revision_id": 0, "type": "depid", "value": "6583"}, "status": "published"}, "_oai": {"id": "oai:nied-repo.bosai.go.jp:00006583", "sets": []}, "author_link": [], "item_10001_biblio_info_7": {"attribute_name": "書誌情報", "attribute_value_mlt": [{"bibliographicIssueDates": {"bibliographicIssueDate": "2022-10-01", "bibliographicIssueDateType": "Issued"}, "bibliographicIssueNumber": "6", "bibliographicPageEnd": "955", "bibliographicPageStart": "944", "bibliographicVolumeNumber": "17", "bibliographic_titles": [{"bibliographic_title": "Journal of Disaster Research", "bibliographic_titleLang": "en"}]}]}, "item_10001_description_5": {"attribute_name": "抄録", "attribute_value_mlt": [{"subitem_description": "To carry out natural disaster response, restoration, and reconstruction, it is important to efficiently and quickly assess the damage caused by the natural disaster. The existing evidence demonstrates that when a natural disaster occurs, social networking services (SNS) information is amplified significantly, compared to normal times. Specifically, the damage caused by a natural disaster tends to cover a wide area and have a large scale. Additionally, it may vary considerably depending on the municipality. Thus, this study investigates whether the utilization of this amplified SNS information can offer an effective approach for real-time evaluation and monitoring of the damage caused by a natural disaster in municipal units. To this end, focusing on time-series changes in SNS information, we propose a general-purpose analysis method of SNS information for evaluating the damage caused by a natural disaster in real time in municipal units. Using real-world data twitter data, we investigate the case of Kumamoto Prefecture, which experienced heavy rain in July 2020 and July 2021, to verify the proposed analysis method.", "subitem_description_language": "en", "subitem_description_type": "Other"}]}, "item_10001_publisher_8": {"attribute_name": "出版者", "attribute_value_mlt": [{"subitem_publisher": "Fuji Technology Press Ltd.", "subitem_publisher_language": "en"}]}, "item_10001_relation_14": {"attribute_name": "DOI", "attribute_value_mlt": [{"subitem_relation_type_id": {"subitem_relation_type_id_text": "10.20965/jdr.2022.p0944"}}]}, "item_10001_source_id_9": {"attribute_name": "ISSN", "attribute_value_mlt": [{"subitem_source_identifier": "1883-8030", "subitem_source_identifier_type": "EISSN"}]}, "item_creator": {"attribute_name": "著者", "attribute_type": "creator", "attribute_value_mlt": [{"creatorNames": [{"creatorName": "Cui Qinglin", "creatorNameLang": "en"}]}, {"creatorNames": [{"creatorName": "Shoyama Kikuko", "creatorNameLang": "en"}]}, {"creatorNames": [{"creatorName": "Hanashima Makoto", "creatorNameLang": "en"}]}, {"creatorNames": [{"creatorName": "Usuda Yuichiro", "creatorNameLang": "en"}]}]}, "item_language": {"attribute_name": "言語", "attribute_value_mlt": [{"subitem_language": "eng"}]}, "item_title": "Early Estimation of Heavy Rain Damage at the Municipal Level Based on Time-Series Analysis of SNS Information", "item_titles": {"attribute_name": "タイトル", "attribute_value_mlt": [{"subitem_title": "Early Estimation of Heavy Rain Damage at the Municipal Level Based on Time-Series Analysis of SNS Information", "subitem_title_language": "en"}]}, "item_type_id": "40001", "owner": "7", "path": ["1670839190650"], "permalink_uri": "https://nied-repo.bosai.go.jp/records/6583", "pubdate": {"attribute_name": "PubDate", "attribute_value": "2025-03-24"}, "publish_date": "2025-03-24", "publish_status": "0", "recid": "6583", "relation": {}, "relation_version_is_last": true, "title": ["Early Estimation of Heavy Rain Damage at the Municipal Level Based on Time-Series Analysis of SNS Information"], "weko_shared_id": -1}
  1. 防災科研関係論文

Early Estimation of Heavy Rain Damage at the Municipal Level Based on Time-Series Analysis of SNS Information

https://nied-repo.bosai.go.jp/records/6583
https://nied-repo.bosai.go.jp/records/6583
73925693-80ba-452e-b52b-cec03a346666
Item type researchmap(1)
公開日 2025-03-24
タイトル
言語 en
タイトル Early Estimation of Heavy Rain Damage at the Municipal Level Based on Time-Series Analysis of SNS Information
言語
言語 eng
著者 Cui Qinglin

× Cui Qinglin

en Cui Qinglin

Search repository
Shoyama Kikuko

× Shoyama Kikuko

en Shoyama Kikuko

Search repository
Hanashima Makoto

× Hanashima Makoto

en Hanashima Makoto

Search repository
Usuda Yuichiro

× Usuda Yuichiro

en Usuda Yuichiro

Search repository
抄録
内容記述タイプ Other
内容記述 To carry out natural disaster response, restoration, and reconstruction, it is important to efficiently and quickly assess the damage caused by the natural disaster. The existing evidence demonstrates that when a natural disaster occurs, social networking services (SNS) information is amplified significantly, compared to normal times. Specifically, the damage caused by a natural disaster tends to cover a wide area and have a large scale. Additionally, it may vary considerably depending on the municipality. Thus, this study investigates whether the utilization of this amplified SNS information can offer an effective approach for real-time evaluation and monitoring of the damage caused by a natural disaster in municipal units. To this end, focusing on time-series changes in SNS information, we propose a general-purpose analysis method of SNS information for evaluating the damage caused by a natural disaster in real time in municipal units. Using real-world data twitter data, we investigate the case of Kumamoto Prefecture, which experienced heavy rain in July 2020 and July 2021, to verify the proposed analysis method.
言語 en
書誌情報 en : Journal of Disaster Research

巻 17, 号 6, p. 944-955, 発行日 2022-10-01
出版者
言語 en
出版者 Fuji Technology Press Ltd.
ISSN
収録物識別子タイプ EISSN
収録物識別子 1883-8030
DOI
関連識別子 10.20965/jdr.2022.p0944
戻る
0
views
See details
Views

Versions

Ver.1 2024-04-15 01:15:03.383789
Show All versions

エクスポート

OAI-PMH
  • OAI-PMH JPCOAR
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by WEKO3

Change consent settings


Powered by WEKO3

Change consent settings