当サイトでは、より良いサービスを提供するため、クッキーを利用しています。クッキーの使用に同意いただける場合は「同意」ボタンをクリックし、クッキーポリシーについては「詳細を見る」をクリックしてください。詳しくは当サイトの サイトポリシー をご確認ください。

詳細を見る...
ログイン サインアップ
言語:

WEKO3

  • トップ
  • ランキング
To

Field does not validate



インデックスリンク

インデックスツリー

  • RootNode

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

{"_buckets": {"deposit": "d1d48fa8-bb92-4cf7-a9d0-7bf3e0ff971b"}, "_deposit": {"created_by": 7, "id": "6616", "owners": [7], "pid": {"revision_id": 0, "type": "depid", "value": "6616"}, "status": "published"}, "_oai": {"id": "oai:nied-repo.bosai.go.jp:00006616", "sets": []}, "author_link": [], "item_10001_biblio_info_7": {"attribute_name": "書誌情報", "attribute_value_mlt": [{"bibliographicIssueDates": {"bibliographicIssueDate": "2023-04-24", "bibliographicIssueDateType": "Issued"}, "bibliographicIssueNumber": "7", "bibliographicPageEnd": "821", "bibliographicPageStart": "803", "bibliographicVolumeNumber": "40", "bibliographic_titles": [{"bibliographic_title": "Journal of Atmospheric and Oceanic Technology", "bibliographic_titleLang": "en"}]}]}, "item_10001_description_5": {"attribute_name": "抄録", "attribute_value_mlt": [{"subitem_description": "We present nowcasts of sudden heavy rains on meso-γ-scales (2–20 km) using the high spatio-temporal resolution of a Multi-Parameter Phased-Array Weather Radar (MP-PAWR) sensitive to rain droplets. The onset of typical storms is successfully predicted with 10-minute lead time, i.e., the current predictability limit of rainfall caused by individual convective cores. A supervised recurrent neural network based on Long Short-Term Memory with 3D spatial convolutions (RN3D) is used to account for the horizontal and vertical changes of the convective cells with a time resolution of 30 sec. The model uses radar reflectivity at horizontal polarization (Z\u003csub\u003eH\u003c/sub\u003e) and the differential reflectivity. The input parameters are defined in a volume of 64×64×8 km\u003csup\u003e3\u003c/sup\u003e with the lowest level at 1.9 km and a resolution of 0.4×0.4×0.25 km\u003csup\u003e3\u003c/sup\u003e. The prediction is a 10-minute sequence of Z\u003csub\u003eH\u003c/sub\u003e at the lowest grid level. The model is trained with a large number of observations of summer 2020 and an adversarial technique. RN3D is tested with different types of rapidly evolving localized heavy rainfalls of summers 2018 and 2019. The model performance is compared to that of an advection model for 3D extrapolation of PAWR echoes (A3DM). RN3D better predicts the formation and dissipation of precipitation. However, RN3D tends to underestimate heavy rainfall especially when the storm is well developed. In this phase of the storm, A3DM nowcast scores are found slightly higher. The high skill of RN3D to predict the onset of sudden localized rainfall is illustrated with an example for which RN3D outperforms the operational precipitation nowcasting system of Japan Meteorological Agency (JMA).", "subitem_description_language": "en", "subitem_description_type": "Other"}]}, "item_10001_publisher_8": {"attribute_name": "出版者", "attribute_value_mlt": [{"subitem_publisher": "American Meteorological Society", "subitem_publisher_language": "en"}]}, "item_10001_relation_14": {"attribute_name": "DOI", "attribute_value_mlt": [{"subitem_relation_type_id": {"subitem_relation_type_id_text": "10.1175/jtech-d-22-0109.1"}}]}, "item_10001_source_id_9": {"attribute_name": "ISSN", "attribute_value_mlt": [{"subitem_source_identifier": "1520-0426", "subitem_source_identifier_type": "EISSN"}]}, "item_creator": {"attribute_name": "著者", "attribute_type": "creator", "attribute_value_mlt": [{"creatorNames": [{"creatorName": "Philippe Baron", "creatorNameLang": "en"}]}, {"creatorNames": [{"creatorName": "Kohei Kawashima", "creatorNameLang": "en"}]}, {"creatorNames": [{"creatorName": "Dong-Kyun Kim", "creatorNameLang": "en"}]}, {"creatorNames": [{"creatorName": "Hiroshi Hanado", "creatorNameLang": "en"}]}, {"creatorNames": [{"creatorName": "Seiji Kawamura", "creatorNameLang": "en"}]}, {"creatorNames": [{"creatorName": "Takeshi Maesaka", "creatorNameLang": "en"}]}, {"creatorNames": [{"creatorName": "Katsuhiro Nakagawa", "creatorNameLang": "en"}]}, {"creatorNames": [{"creatorName": "Shinsuke Satoh", "creatorNameLang": "en"}]}, {"creatorNames": [{"creatorName": "Tomoo Ushio", "creatorNameLang": "en"}]}]}, "item_title": "Nowcasting Multi-Parameter Phased-Array Weather Radar (MP-PAWR) echoes of localized heavy precipitation using a 3D Recurrent Neural Network trained with an adversarial technique", "item_titles": {"attribute_name": "タイトル", "attribute_value_mlt": [{"subitem_title": "Nowcasting Multi-Parameter Phased-Array Weather Radar (MP-PAWR) echoes of localized heavy precipitation using a 3D Recurrent Neural Network trained with an adversarial technique", "subitem_title_language": "en"}]}, "item_type_id": "40001", "owner": "7", "path": ["1670839190650"], "permalink_uri": "https://nied-repo.bosai.go.jp/records/6616", "pubdate": {"attribute_name": "PubDate", "attribute_value": "2025-04-14"}, "publish_date": "2025-04-14", "publish_status": "0", "recid": "6616", "relation": {}, "relation_version_is_last": true, "title": ["Nowcasting Multi-Parameter Phased-Array Weather Radar (MP-PAWR) echoes of localized heavy precipitation using a 3D Recurrent Neural Network trained with an adversarial technique"], "weko_shared_id": -1}
  1. 防災科研関係論文

Nowcasting Multi-Parameter Phased-Array Weather Radar (MP-PAWR) echoes of localized heavy precipitation using a 3D Recurrent Neural Network trained with an adversarial technique

https://nied-repo.bosai.go.jp/records/6616
https://nied-repo.bosai.go.jp/records/6616
766e024b-a0bd-4eae-b32e-5af3f70b9f30
Item type researchmap(1)
公開日 2025-04-14
タイトル
言語 en
タイトル Nowcasting Multi-Parameter Phased-Array Weather Radar (MP-PAWR) echoes of localized heavy precipitation using a 3D Recurrent Neural Network trained with an adversarial technique
著者 Philippe Baron

× Philippe Baron

en Philippe Baron

Search repository
Kohei Kawashima

× Kohei Kawashima

en Kohei Kawashima

Search repository
Dong-Kyun Kim

× Dong-Kyun Kim

en Dong-Kyun Kim

Search repository
Hiroshi Hanado

× Hiroshi Hanado

en Hiroshi Hanado

Search repository
Seiji Kawamura

× Seiji Kawamura

en Seiji Kawamura

Search repository
Takeshi Maesaka

× Takeshi Maesaka

en Takeshi Maesaka

Search repository
Katsuhiro Nakagawa

× Katsuhiro Nakagawa

en Katsuhiro Nakagawa

Search repository
Shinsuke Satoh

× Shinsuke Satoh

en Shinsuke Satoh

Search repository
Tomoo Ushio

× Tomoo Ushio

en Tomoo Ushio

Search repository
抄録
内容記述タイプ Other
内容記述 We present nowcasts of sudden heavy rains on meso-γ-scales (2–20 km) using the high spatio-temporal resolution of a Multi-Parameter Phased-Array Weather Radar (MP-PAWR) sensitive to rain droplets. The onset of typical storms is successfully predicted with 10-minute lead time, i.e., the current predictability limit of rainfall caused by individual convective cores. A supervised recurrent neural network based on Long Short-Term Memory with 3D spatial convolutions (RN3D) is used to account for the horizontal and vertical changes of the convective cells with a time resolution of 30 sec. The model uses radar reflectivity at horizontal polarization (Z<sub>H</sub>) and the differential reflectivity. The input parameters are defined in a volume of 64×64×8 km<sup>3</sup> with the lowest level at 1.9 km and a resolution of 0.4×0.4×0.25 km<sup>3</sup>. The prediction is a 10-minute sequence of Z<sub>H</sub> at the lowest grid level. The model is trained with a large number of observations of summer 2020 and an adversarial technique. RN3D is tested with different types of rapidly evolving localized heavy rainfalls of summers 2018 and 2019. The model performance is compared to that of an advection model for 3D extrapolation of PAWR echoes (A3DM). RN3D better predicts the formation and dissipation of precipitation. However, RN3D tends to underestimate heavy rainfall especially when the storm is well developed. In this phase of the storm, A3DM nowcast scores are found slightly higher. The high skill of RN3D to predict the onset of sudden localized rainfall is illustrated with an example for which RN3D outperforms the operational precipitation nowcasting system of Japan Meteorological Agency (JMA).
言語 en
書誌情報 en : Journal of Atmospheric and Oceanic Technology

巻 40, 号 7, p. 803-821, 発行日 2023-04-24
出版者
言語 en
出版者 American Meteorological Society
ISSN
収録物識別子タイプ EISSN
収録物識別子 1520-0426
DOI
関連識別子 10.1175/jtech-d-22-0109.1
戻る
0
views
See details
Views

Versions

Ver.1 2024-05-13 04:03:39.463199
Show All versions

エクスポート

OAI-PMH
  • OAI-PMH JPCOAR
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by WEKO3

Change consent settings


Powered by WEKO3

Change consent settings