当サイトでは、より良いサービスを提供するため、クッキーを利用しています。クッキーの使用に同意いただける場合は「同意」ボタンをクリックし、クッキーポリシーについては「詳細を見る」をクリックしてください。詳しくは当サイトの サイトポリシー をご確認ください。

詳細を見る...
ログイン サインアップ
言語:

WEKO3

  • トップ
  • ランキング
To

Field does not validate



インデックスリンク

インデックスツリー

  • RootNode

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

{"_buckets": {"deposit": "39c50879-794e-4ecc-a258-4a9a03c3abb5"}, "_deposit": {"created_by": 10, "id": "6856", "owners": [10], "pid": {"revision_id": 0, "type": "depid", "value": "6856"}, "status": "published"}, "_oai": {"id": "oai:nied-repo.bosai.go.jp:00006856", "sets": []}, "author_link": [], "item_10001_biblio_info_7": {"attribute_name": "書誌情報", "attribute_value_mlt": [{"bibliographicIssueDates": {"bibliographicIssueDate": "2024-11-18", "bibliographicIssueDateType": "Issued"}, "bibliographicIssueNumber": "Article number: 57", "bibliographicPageStart": "13 pp.", "bibliographicVolumeNumber": "11", "bibliographic_titles": [{"bibliographic_title": "Progress in Earth and Planetary Science", "bibliographic_titleLang": "en"}]}]}, "item_10001_description_5": {"attribute_name": "抄録", "attribute_value_mlt": [{"subitem_description": "Various small particles are present in the clouds. Hydrometeor videosonde (HYVIS) is an in situ instrument to observe such particles. The movies were used to capture hydrometeors with approximately 110,000 frames per sounding. When the particles in such movies were manually classified and measured sizes of particles for every several frames, it took an unrealistically long time to perform statistical analysis because of the large number of observed frames. Particle classification is subjective for the observers. This study developed a technique to classify cloud particles objectively using deep learning to overcome these problems and investigated the statistical microphysical characteristics of clouds. This study used the deep learning method You Only Looking Once for detection and classification. The training data were obtained using HYVIS in the Republic of Palau in 2013. The results trained using only HYVIS images showed low validity because some types of particles in the training data were insufficient. The data for typical particle shapes were augmented to improve the classification. Thus, the validity of classification using augmented data was improved. We used the Yonaguni Island HYVIS observation results from manual and artificial intelligence (AI) classification. The AI tended to classify the less irregular type than the manual, but no other significant differences were found. We believe this AI classification system will be for cloud microphysical studies on solid-phase particles.\"", "subitem_description_language": "en", "subitem_description_type": "Other"}]}, "item_10001_publisher_8": {"attribute_name": "出版者", "attribute_value_mlt": [{"subitem_publisher": "Springer Science and Business Media LLC", "subitem_publisher_language": "en"}]}, "item_10001_relation_14": {"attribute_name": "DOI", "attribute_value_mlt": [{"subitem_relation_type_id": {"subitem_relation_type_id_text": "10.1186/s40645-024-00667-2"}}]}, "item_10001_source_id_9": {"attribute_name": "ISSN", "attribute_value_mlt": [{"subitem_source_identifier": "2197-4284", "subitem_source_identifier_type": "EISSN"}]}, "item_creator": {"attribute_name": "著者", "attribute_type": "creator", "attribute_value_mlt": [{"creatorNames": [{"creatorName": "Asuka Yoshimura", "creatorNameLang": "en"}]}, {"creatorNames": [{"creatorName": "Kazuhisa Tsuboki", "creatorNameLang": "en"}]}, {"creatorNames": [{"creatorName": "Taro Shinoda", "creatorNameLang": "en"}]}, {"creatorNames": [{"creatorName": "Tadayasu Ohigashi", "creatorNameLang": "en"}]}, {"creatorNames": [{"creatorName": "Kensaku Shimizu", "creatorNameLang": "en"}]}]}, "item_language": {"attribute_name": "言語", "attribute_value_mlt": [{"subitem_language": "eng"}]}, "item_title": "Objective classification for solid hydrometeor particles using deep learning", "item_titles": {"attribute_name": "タイトル", "attribute_value_mlt": [{"subitem_title": "Objective classification for solid hydrometeor particles using deep learning", "subitem_title_language": "en"}]}, "item_type_id": "40001", "owner": "10", "path": ["1670839190650"], "permalink_uri": "https://nied-repo.bosai.go.jp/records/6856", "pubdate": {"attribute_name": "PubDate", "attribute_value": "2024-11-25"}, "publish_date": "2024-11-25", "publish_status": "0", "recid": "6856", "relation": {}, "relation_version_is_last": true, "title": ["Objective classification for solid hydrometeor particles using deep learning"], "weko_shared_id": -1}
  1. 防災科研関係論文

Objective classification for solid hydrometeor particles using deep learning

https://nied-repo.bosai.go.jp/records/6856
https://nied-repo.bosai.go.jp/records/6856
2b69c56e-97c7-438c-9a4a-2d90d17441db
Item type researchmap(1)
公開日 2024-11-25
タイトル
言語 en
タイトル Objective classification for solid hydrometeor particles using deep learning
言語
言語 eng
著者 Asuka Yoshimura

× Asuka Yoshimura

en Asuka Yoshimura

Search repository
Kazuhisa Tsuboki

× Kazuhisa Tsuboki

en Kazuhisa Tsuboki

Search repository
Taro Shinoda

× Taro Shinoda

en Taro Shinoda

Search repository
Tadayasu Ohigashi

× Tadayasu Ohigashi

en Tadayasu Ohigashi

Search repository
Kensaku Shimizu

× Kensaku Shimizu

en Kensaku Shimizu

Search repository
抄録
内容記述タイプ Other
内容記述 Various small particles are present in the clouds. Hydrometeor videosonde (HYVIS) is an in situ instrument to observe such particles. The movies were used to capture hydrometeors with approximately 110,000 frames per sounding. When the particles in such movies were manually classified and measured sizes of particles for every several frames, it took an unrealistically long time to perform statistical analysis because of the large number of observed frames. Particle classification is subjective for the observers. This study developed a technique to classify cloud particles objectively using deep learning to overcome these problems and investigated the statistical microphysical characteristics of clouds. This study used the deep learning method You Only Looking Once for detection and classification. The training data were obtained using HYVIS in the Republic of Palau in 2013. The results trained using only HYVIS images showed low validity because some types of particles in the training data were insufficient. The data for typical particle shapes were augmented to improve the classification. Thus, the validity of classification using augmented data was improved. We used the Yonaguni Island HYVIS observation results from manual and artificial intelligence (AI) classification. The AI tended to classify the less irregular type than the manual, but no other significant differences were found. We believe this AI classification system will be for cloud microphysical studies on solid-phase particles."
言語 en
書誌情報 en : Progress in Earth and Planetary Science

巻 11, 号 Article number: 57, p. 13 pp., 発行日 2024-11-18
出版者
言語 en
出版者 Springer Science and Business Media LLC
ISSN
収録物識別子タイプ EISSN
収録物識別子 2197-4284
DOI
関連識別子 10.1186/s40645-024-00667-2
戻る
0
views
See details
Views

Versions

Ver.1 2024-11-25 04:54:13.422919
Show All versions

エクスポート

OAI-PMH
  • OAI-PMH JPCOAR
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by WEKO3

Change consent settings


Powered by WEKO3

Change consent settings