WEKO3
アイテム
{"_buckets": {"deposit": "a5b0bfa7-361a-4d78-ba32-77ba22071a33"}, "_deposit": {"created_by": 7, "id": "6379", "owners": [7], "pid": {"revision_id": 0, "type": "depid", "value": "6379"}, "status": "published"}, "_oai": {"id": "oai:nied-repo.bosai.go.jp:00006379", "sets": []}, "author_link": [], "item_10001_biblio_info_7": {"attribute_name": "書誌情報", "attribute_value_mlt": [{"bibliographicIssueDates": {"bibliographicIssueDate": "2021-10-25", "bibliographicIssueDateType": "Issued"}, "bibliographicVolumeNumber": "929", "bibliographic_titles": [{"bibliographic_title": "Journal of Fluid Mechanics", "bibliographic_titleLang": "ja"}, {"bibliographic_title": "JOURNAL OF FLUID MECHANICS", "bibliographic_titleLang": "en"}]}]}, "item_10001_description_5": {"attribute_name": "抄録", "attribute_value_mlt": [{"subitem_description": "\u003cjats:p\u003eIn high-Reynolds-number turbulence the spatial distribution of velocity fluctuation at small scales is strongly non-uniform. In accordance with the non-uniformity, the distributions of the inertial and viscous forces are also non-uniform. According to direct numerical simulation (DNS) of forced turbulence of an incompressible fluid obeying the Navier?Stokes equation in a periodic box at the Taylor microscale Reynolds number \u003cjats:inline-formula\u003e\n \u003cjats:alternatives\u003e\n \u003cjats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0022112021008065_inline1.png\" /\u003e\n \u003cjats:tex-math\u003e$R_\\lambda \\approx 1100$\u003c/jats:tex-math\u003e\n \u003c/jats:alternatives\u003e\n \u003c/jats:inline-formula\u003e, the average \u003cjats:inline-formula\u003e\n \u003cjats:alternatives\u003e\n \u003cjats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0022112021008065_inline2.png\" /\u003e\n \u003cjats:tex-math\u003e$\\langle R_{loc}\\rangle$\u003c/jats:tex-math\u003e\n \u003c/jats:alternatives\u003e\n \u003c/jats:inline-formula\u003e over the space of the ‘local Reynolds number’ \u003cjats:inline-formula\u003e\n \u003cjats:alternatives\u003e\n \u003cjats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0022112021008065_inline3.png\" /\u003e\n \u003cjats:tex-math\u003e$R_ {loc}$\u003c/jats:tex-math\u003e\n \u003c/jats:alternatives\u003e\n \u003c/jats:inline-formula\u003e, which is defined as the ratio of inertial to viscous forces at each point in the flow, is much smaller than the conventional ‘Reynolds number’ given by \u003cjats:inline-formula\u003e\n \u003cjats:alternatives\u003e\n \u003cjats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0022112021008065_inline4.png\" /\u003e\n \u003cjats:tex-math\u003e$Re \\equiv UL/\\nu$\u003c/jats:tex-math\u003e\n \u003c/jats:alternatives\u003e\n \u003c/jats:inline-formula\u003e, where \u003cjats:inline-formula\u003e\n \u003cjats:alternatives\u003e\n \u003cjats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0022112021008065_inline5.png\" /\u003e\n \u003cjats:tex-math\u003e$U$\u003c/jats:tex-math\u003e\n \u003c/jats:alternatives\u003e\n \u003c/jats:inline-formula\u003e and \u003cjats:inline-formula\u003e\n \u003cjats:alternatives\u003e\n \u003cjats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0022112021008065_inline6.png\" /\u003e\n \u003cjats:tex-math\u003e$L$\u003c/jats:tex-math\u003e\n \u003c/jats:alternatives\u003e\n \u003c/jats:inline-formula\u003e are the characteristic velocity and length of the energy-containing eddies, and \u003cjats:inline-formula\u003e\n \u003cjats:alternatives\u003e\n \u003cjats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0022112021008065_inline7.png\" /\u003e\n \u003cjats:tex-math\u003e$\\nu$\u003c/jats:tex-math\u003e\n \u003c/jats:alternatives\u003e\n \u003c/jats:inline-formula\u003e is the kinematic viscosity. While both conditional averages of the inertial and viscous forces for a given squared vorticity \u003cjats:inline-formula\u003e\n \u003cjats:alternatives\u003e\n \u003cjats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0022112021008065_inline8.png\" /\u003e\n \u003cjats:tex-math\u003e$\\omega ^{2}$\u003c/jats:tex-math\u003e\n \u003c/jats:alternatives\u003e\n \u003c/jats:inline-formula\u003e increase with \u003cjats:inline-formula\u003e\n \u003cjats:alternatives\u003e\n \u003cjats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0022112021008065_inline9.png\" /\u003e\n \u003cjats:tex-math\u003e$\\omega ^{2}$\u003c/jats:tex-math\u003e\n \u003c/jats:alternatives\u003e\n \u003c/jats:inline-formula\u003e at large \u003cjats:inline-formula\u003e\n \u003cjats:alternatives\u003e\n \u003cjats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0022112021008065_inline10.png\" /\u003e\n \u003cjats:tex-math\u003e$\\omega ^{2}$\u003c/jats:tex-math\u003e\n \u003c/jats:alternatives\u003e\n \u003c/jats:inline-formula\u003e, the conditional average of \u003cjats:inline-formula\u003e\n \u003cjats:alternatives\u003e\n \u003cjats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0022112021008065_inline11.png\" /\u003e\n \u003cjats:tex-math\u003e$R_ {loc}$\u003c/jats:tex-math\u003e\n \u003c/jats:alternatives\u003e\n \u003c/jats:inline-formula\u003e is almost independent of \u003cjats:inline-formula\u003e\n \u003cjats:alternatives\u003e\n \u003cjats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0022112021008065_inline12.png\" /\u003e\n \u003cjats:tex-math\u003e$\\omega ^{2}$\u003c/jats:tex-math\u003e\n \u003c/jats:alternatives\u003e\n \u003c/jats:inline-formula\u003e. A comparison of the DNS field with a random structureless velocity field suggests that the increase in the conditional average of \u003cjats:inline-formula\u003e\n \u003cjats:alternatives\u003e\n \u003cjats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0022112021008065_inline13.png\" /\u003e\n \u003cjats:tex-math\u003e$R_ {loc}$\u003c/jats:tex-math\u003e\n \u003c/jats:alternatives\u003e\n \u003c/jats:inline-formula\u003e with \u003cjats:inline-formula\u003e\n \u003cjats:alternatives\u003e\n \u003cjats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0022112021008065_inline14.png\" /\u003e\n \u003cjats:tex-math\u003e$\\omega ^{2}$\u003c/jats:tex-math\u003e\n \u003c/jats:alternatives\u003e\n \u003c/jats:inline-formula\u003e at large \u003cjats:inline-formula\u003e\n \u003cjats:alternatives\u003e\n \u003cjats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0022112021008065_inline15.png\" /\u003e\n \u003cjats:tex-math\u003e$\\omega ^{2}$\u003c/jats:tex-math\u003e\n \u003c/jats:alternatives\u003e\n \u003c/jats:inline-formula\u003e is suppressed by the Navier?Stokes dynamics. Something similar is also true for the conditional averages for a given local energy dissipation rate per unit mass. Certain features of intermittency effects such as that on the \u003cjats:inline-formula\u003e\n \u003cjats:alternatives\u003e\n \u003cjats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0022112021008065_inline16.png\" /\u003e\n \u003cjats:tex-math\u003e$Re$\u003c/jats:tex-math\u003e\n \u003c/jats:alternatives\u003e\n \u003c/jats:inline-formula\u003e dependence of \u003cjats:inline-formula\u003e\n \u003cjats:alternatives\u003e\n \u003cjats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0022112021008065_inline17.png\" /\u003e\n \u003cjats:tex-math\u003e$\\langle R_{loc}\\rangle$\u003c/jats:tex-math\u003e\n \u003c/jats:alternatives\u003e\n \u003c/jats:inline-formula\u003e are explained by a multi-fractal model by Dubrulle (\u003cjats:italic\u003eJ. Fluid Mech.\u003c/jats:italic\u003e, vol. 867, 2019, P1).\u003c/jats:p\u003e", "subitem_description_language": "ja", "subitem_description_type": "Other"}, {"subitem_description": "In high-Reynolds-number turbulence the spatial distribution of velocity fluctuation at small scales is strongly non-uniform. In accordance with the non-uniformity, the distributions of the inertial and viscous forces are also non-uniform. According to direct numerical simulation (DNS) of forced turbulence of an incompressible fluid obeying the Navier-Stokes equation in a periodic box at the Taylor microscale Reynolds number R-lambda approximate to 1100, the average \u003c R-loc \u003e over the space of the \u0027local Reynolds number\u0027 R-loc, which is defined as the ratio of inertial to viscous forces at each point in the flow, is much smaller than the conventional \u0027Reynolds number\u0027 given by Re = UL/v, where U and L are the characteristic velocity and length of the energy-containing eddies, and nu is the kinematic viscosity. While both conditional averages of the inertial and viscous forces for a given squared vorticity omega(2) increase with omega(2) at large omega(2), the conditional average of R-loc is almost independent of omega(2). A comparison of the DNS field with a random structureless velocity field suggests that the increase in the conditional average of R-loc with omega(2) at large omega(2) is suppressed by the Navier-Stokes dynamics. Something similar is also true for the conditional averages for a given local energy dissipation rate per unit mass. Certain features of intermittency effects such as that on the Re dependence of \u003c R-loc \u003e are explained by a multi-fractal model by Dubrulle (J. Fluid Mech., vol. 867, 2019, P1).", "subitem_description_language": "en", "subitem_description_type": "Other"}]}, "item_10001_publisher_8": {"attribute_name": "出版者", "attribute_value_mlt": [{"subitem_publisher": "Cambridge University Press (CUP)", "subitem_publisher_language": "ja"}, {"subitem_publisher": "CAMBRIDGE UNIV PRESS", "subitem_publisher_language": "en"}]}, "item_10001_relation_14": {"attribute_name": "DOI", "attribute_value_mlt": [{"subitem_relation_type_id": {"subitem_relation_type_id_text": "10.1017/jfm.2021.806"}}]}, "item_10001_source_id_9": {"attribute_name": "ISSN", "attribute_value_mlt": [{"subitem_source_identifier": "1469-7645", "subitem_source_identifier_type": "EISSN"}]}, "item_creator": {"attribute_name": "著者", "attribute_type": "creator", "attribute_value_mlt": [{"creatorNames": [{"creatorName": "Yukio Kaneda", "creatorNameLang": "ja"}, {"creatorName": "Yukio Kaneda", "creatorNameLang": "en"}]}, {"creatorNames": [{"creatorName": "Takashi Ishihara", "creatorNameLang": "ja"}, {"creatorName": "Takashi Ishihara", "creatorNameLang": "en"}]}, {"creatorNames": [{"creatorName": "Koji Morishita", "creatorNameLang": "ja"}, {"creatorName": "Koji Morishita", "creatorNameLang": "en"}]}, {"creatorNames": [{"creatorName": "Mitsuo Yokokawa", "creatorNameLang": "ja"}, {"creatorName": "Mitsuo Yokokawa", "creatorNameLang": "en"}]}, {"creatorNames": [{"creatorName": "Atsuya Uno", "creatorNameLang": "ja"}, {"creatorName": "Atsuya Uno", "creatorNameLang": "en"}]}]}, "item_language": {"attribute_name": "言語", "attribute_value_mlt": [{"subitem_language": "eng"}]}, "item_title": "Statistics of local Reynolds number in box turbulence: ratio of inertial to viscous forces", "item_titles": {"attribute_name": "タイトル", "attribute_value_mlt": [{"subitem_title": "Statistics of local Reynolds number in box turbulence: ratio of inertial to viscous forces", "subitem_title_language": "ja"}, {"subitem_title": "Statistics of local Reynolds number in box turbulence: ratio of inertial to viscous forces", "subitem_title_language": "en"}]}, "item_type_id": "40001", "owner": "7", "path": ["1670839190650"], "permalink_uri": "https://nied-repo.bosai.go.jp/records/6379", "pubdate": {"attribute_name": "PubDate", "attribute_value": "2023-09-20"}, "publish_date": "2023-09-20", "publish_status": "0", "recid": "6379", "relation": {}, "relation_version_is_last": true, "title": ["Statistics of local Reynolds number in box turbulence: ratio of inertial to viscous forces"], "weko_shared_id": -1}
Statistics of local Reynolds number in box turbulence: ratio of inertial to viscous forces
https://nied-repo.bosai.go.jp/records/6379
https://nied-repo.bosai.go.jp/records/637973a0bd88-938d-462f-a750-64e4799298ef
Item type | researchmap(1) | |||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
公開日 | 2023-09-20 | |||||||||||||||||||||||||
タイトル | ||||||||||||||||||||||||||
言語 | ja | |||||||||||||||||||||||||
タイトル | Statistics of local Reynolds number in box turbulence: ratio of inertial to viscous forces | |||||||||||||||||||||||||
タイトル | ||||||||||||||||||||||||||
言語 | en | |||||||||||||||||||||||||
タイトル | Statistics of local Reynolds number in box turbulence: ratio of inertial to viscous forces | |||||||||||||||||||||||||
言語 | ||||||||||||||||||||||||||
言語 | eng | |||||||||||||||||||||||||
著者 |
Yukio Kaneda
× Yukio Kaneda
× Takashi Ishihara
× Koji Morishita
× Mitsuo Yokokawa
× Atsuya Uno
|
|||||||||||||||||||||||||
抄録 | ||||||||||||||||||||||||||
内容記述タイプ | Other | |||||||||||||||||||||||||
内容記述 | <jats:p>In high-Reynolds-number turbulence the spatial distribution of velocity fluctuation at small scales is strongly non-uniform. In accordance with the non-uniformity, the distributions of the inertial and viscous forces are also non-uniform. According to direct numerical simulation (DNS) of forced turbulence of an incompressible fluid obeying the Navier?Stokes equation in a periodic box at the Taylor microscale Reynolds number <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="png" xlink:href="S0022112021008065_inline1.png" /> <jats:tex-math>$R_\lambda \approx 1100$</jats:tex-math> </jats:alternatives> </jats:inline-formula>, the average <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="png" xlink:href="S0022112021008065_inline2.png" /> <jats:tex-math>$\langle R_{loc}\rangle$</jats:tex-math> </jats:alternatives> </jats:inline-formula> over the space of the ‘local Reynolds number’ <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="png" xlink:href="S0022112021008065_inline3.png" /> <jats:tex-math>$R_ {loc}$</jats:tex-math> </jats:alternatives> </jats:inline-formula>, which is defined as the ratio of inertial to viscous forces at each point in the flow, is much smaller than the conventional ‘Reynolds number’ given by <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="png" xlink:href="S0022112021008065_inline4.png" /> <jats:tex-math>$Re \equiv UL/\nu$</jats:tex-math> </jats:alternatives> </jats:inline-formula>, where <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="png" xlink:href="S0022112021008065_inline5.png" /> <jats:tex-math>$U$</jats:tex-math> </jats:alternatives> </jats:inline-formula> and <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="png" xlink:href="S0022112021008065_inline6.png" /> <jats:tex-math>$L$</jats:tex-math> </jats:alternatives> </jats:inline-formula> are the characteristic velocity and length of the energy-containing eddies, and <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="png" xlink:href="S0022112021008065_inline7.png" /> <jats:tex-math>$\nu$</jats:tex-math> </jats:alternatives> </jats:inline-formula> is the kinematic viscosity. While both conditional averages of the inertial and viscous forces for a given squared vorticity <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="png" xlink:href="S0022112021008065_inline8.png" /> <jats:tex-math>$\omega ^{2}$</jats:tex-math> </jats:alternatives> </jats:inline-formula> increase with <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="png" xlink:href="S0022112021008065_inline9.png" /> <jats:tex-math>$\omega ^{2}$</jats:tex-math> </jats:alternatives> </jats:inline-formula> at large <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="png" xlink:href="S0022112021008065_inline10.png" /> <jats:tex-math>$\omega ^{2}$</jats:tex-math> </jats:alternatives> </jats:inline-formula>, the conditional average of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="png" xlink:href="S0022112021008065_inline11.png" /> <jats:tex-math>$R_ {loc}$</jats:tex-math> </jats:alternatives> </jats:inline-formula> is almost independent of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="png" xlink:href="S0022112021008065_inline12.png" /> <jats:tex-math>$\omega ^{2}$</jats:tex-math> </jats:alternatives> </jats:inline-formula>. A comparison of the DNS field with a random structureless velocity field suggests that the increase in the conditional average of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="png" xlink:href="S0022112021008065_inline13.png" /> <jats:tex-math>$R_ {loc}$</jats:tex-math> </jats:alternatives> </jats:inline-formula> with <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="png" xlink:href="S0022112021008065_inline14.png" /> <jats:tex-math>$\omega ^{2}$</jats:tex-math> </jats:alternatives> </jats:inline-formula> at large <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="png" xlink:href="S0022112021008065_inline15.png" /> <jats:tex-math>$\omega ^{2}$</jats:tex-math> </jats:alternatives> </jats:inline-formula> is suppressed by the Navier?Stokes dynamics. Something similar is also true for the conditional averages for a given local energy dissipation rate per unit mass. Certain features of intermittency effects such as that on the <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="png" xlink:href="S0022112021008065_inline16.png" /> <jats:tex-math>$Re$</jats:tex-math> </jats:alternatives> </jats:inline-formula> dependence of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="png" xlink:href="S0022112021008065_inline17.png" /> <jats:tex-math>$\langle R_{loc}\rangle$</jats:tex-math> </jats:alternatives> </jats:inline-formula> are explained by a multi-fractal model by Dubrulle (<jats:italic>J. Fluid Mech.</jats:italic>, vol. 867, 2019, P1).</jats:p> |
|||||||||||||||||||||||||
言語 | ja | |||||||||||||||||||||||||
抄録 | ||||||||||||||||||||||||||
内容記述タイプ | Other | |||||||||||||||||||||||||
内容記述 | In high-Reynolds-number turbulence the spatial distribution of velocity fluctuation at small scales is strongly non-uniform. In accordance with the non-uniformity, the distributions of the inertial and viscous forces are also non-uniform. According to direct numerical simulation (DNS) of forced turbulence of an incompressible fluid obeying the Navier-Stokes equation in a periodic box at the Taylor microscale Reynolds number R-lambda approximate to 1100, the average < R-loc > over the space of the 'local Reynolds number' R-loc, which is defined as the ratio of inertial to viscous forces at each point in the flow, is much smaller than the conventional 'Reynolds number' given by Re = UL/v, where U and L are the characteristic velocity and length of the energy-containing eddies, and nu is the kinematic viscosity. While both conditional averages of the inertial and viscous forces for a given squared vorticity omega(2) increase with omega(2) at large omega(2), the conditional average of R-loc is almost independent of omega(2). A comparison of the DNS field with a random structureless velocity field suggests that the increase in the conditional average of R-loc with omega(2) at large omega(2) is suppressed by the Navier-Stokes dynamics. Something similar is also true for the conditional averages for a given local energy dissipation rate per unit mass. Certain features of intermittency effects such as that on the Re dependence of < R-loc > are explained by a multi-fractal model by Dubrulle (J. Fluid Mech., vol. 867, 2019, P1). | |||||||||||||||||||||||||
言語 | en | |||||||||||||||||||||||||
書誌情報 |
ja : Journal of Fluid Mechanics en : JOURNAL OF FLUID MECHANICS 巻 929, 発行日 2021-10-25 |
|||||||||||||||||||||||||
出版者 | ||||||||||||||||||||||||||
言語 | ja | |||||||||||||||||||||||||
出版者 | Cambridge University Press (CUP) | |||||||||||||||||||||||||
出版者 | ||||||||||||||||||||||||||
言語 | en | |||||||||||||||||||||||||
出版者 | CAMBRIDGE UNIV PRESS | |||||||||||||||||||||||||
ISSN | ||||||||||||||||||||||||||
収録物識別子タイプ | EISSN | |||||||||||||||||||||||||
収録物識別子 | 1469-7645 | |||||||||||||||||||||||||
DOI | ||||||||||||||||||||||||||
関連識別子 | 10.1017/jfm.2021.806 |