当サイトでは、より良いサービスを提供するため、クッキーを利用しています。クッキーの使用に同意いただける場合は「同意」ボタンをクリックし、クッキーポリシーについては「詳細を見る」をクリックしてください。詳しくは当サイトの サイトポリシー をご確認ください。

詳細を見る...
ログイン サインアップ
言語:

WEKO3

  • トップ
  • ランキング
To

Field does not validate



インデックスリンク

インデックスツリー

  • RootNode

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

{"_buckets": {"deposit": "4be90a97-d525-450d-bb73-ee36f274e937"}, "_deposit": {"created_by": 6, "id": "6516", "owner": "10", "owners": [6], "pid": {"revision_id": 0, "type": "depid", "value": "6516"}, "status": "published"}, "_oai": {"id": "oai:nied-repo.bosai.go.jp:00006516", "sets": ["1686623598839"]}, "author_link": ["82", "1598", "95", "1825"], "control_number": "6516", "item_10001_biblio_info_7": {"attribute_name": "書誌情報", "attribute_value_mlt": [{"bibliographicIssueDates": {"bibliographicIssueDate": "2023-09-29", "bibliographicIssueDateType": "Issued"}, "bibliographicIssueNumber": "88", "bibliographicPageEnd": "31", "bibliographicPageStart": "25", "bibliographic_titles": [{"bibliographic_title": "防災科学技術研究所 研究報告", "bibliographic_titleLang": "ja"}, {"bibliographic_title": "Report of the National Research Institute for Earth Science and Disaster Resilience", "bibliographic_titleLang": "en"}]}]}, "item_10001_description_5": {"attribute_name": "抄録", "attribute_value_mlt": [{"subitem_description": "噴火様式の連続リアルタイムモニタリングはハザード評価に不可欠である.火山灰粒子の構成物比は噴火様式のプロキシとして用いられてきた.しかし,火山灰構成物比のリアルタイムモニタリングはまだ実現されていない.本研究では,畳み込みニューラルネットワーク(CNN)と RGB 顕微鏡写真を用いて,2014 年から2016 年にかけて噴出された阿蘇火山の火山灰粒子を分類した.我々は,2 つの火山灰試料の粒子を5 つのカテゴリに分類し,計512 枚の画像を用いてCNN アルゴリズムに基づく学習を行った.次に,学習させたCNN を用いて,6 試料の構成物解析を行った.その結果,CNN による構成物比は,実体顕微鏡観察に基づく分類結果と調和的であり,また顕微鏡写真中の518 個の粒子を3 分以内に分類することに成功した.以上から,RGB 顕微鏡写真とCNN を用いた構成物解析は,噴火の準リアルタイムモニタリングに適用可能であると結論できる.", "subitem_description_language": "ja", "subitem_description_type": "Abstract"}, {"subitem_description": "Real-time monitoring is vital for timely hazard evaluation during ongoing volcanic eruptions. The component fractions of volcanic ash particles have been used as a proxy for eruption style. However, continuous real-time monitoring of the components in airfall ash has not yet been realized, because manual classification is time-consuming and the criteria for the classification are subjective. In this study, we used a convolutional neural network (CNN) method to classify volcanic ash particles from the 2014?2016 activity at Aso volcano, Japan, using microphotographs taken as red-green-blue (RGB) images that capture the ash surface microstructures. We trained the CNN algorithm using 512 images of five categories of ash particles which were based on color, vesicularity, glassiness, alteration and crystal fragments from two ash samples.Component analysis was then undertaken on six ash samples using the trained CNN. The component fractions obtained by the trained CNN are consistent with those from a manual classification based on observations with a stereoscopic microscope. The trained CNN successfully classified 518 particles in the microphotographs within 3 min. Thus, we conclude that component analysis by the CNN method using RGB microphotographs could be applied to quasi-real-time monitoring of an ongoing eruption.", "subitem_description_language": "en", "subitem_description_type": "Abstract"}]}, "item_10001_identifier_registration": {"attribute_name": "ID登録", "attribute_value_mlt": [{"subitem_identifier_reg_text": "10.24732/NIED.00006516", "subitem_identifier_reg_type": "JaLC"}]}, "item_10001_publisher_8": {"attribute_name": "出版者", "attribute_value_mlt": [{"subitem_publisher": "防災科学技術研究所", "subitem_publisher_language": "ja"}]}, "item_10001_source_id_9": {"attribute_name": "収録物識別子", "attribute_value_mlt": [{"subitem_source_identifier": "1347-7471", "subitem_source_identifier_type": "EISSN"}]}, "item_creator": {"attribute_name": "著者", "attribute_type": "creator", "attribute_value_mlt": [{"creatorNames": [{"creatorName": "三輪, 学央", "creatorNameLang": "ja"}, {"creatorName": "ミワ, タカヒロ", "creatorNameLang": "ja-Kana"}, {"creatorName": "MIWA, Takahiro", "creatorNameLang": "en"}], "familyNames": [{"familyName": "三輪", "familyNameLang": "ja"}, {"familyName": "ミワ", "familyNameLang": "ja-Kana"}, {"familyName": "MIWA", "familyNameLang": "en"}], "givenNames": [{"givenName": "学央", "givenNameLang": "ja"}, {"givenName": "タカヒロ", "givenNameLang": "ja-Kana"}, {"givenName": "Takahiro", "givenNameLang": "en"}], "nameIdentifiers": [{"nameIdentifier": "82", "nameIdentifierScheme": "WEKO"}]}, {"creatorNames": [{"creatorName": "長井, 雅史", "creatorNameLang": "ja"}, {"creatorName": "ナガイ, マサシ", "creatorNameLang": "ja-Kana"}, {"creatorName": "NAGAI, Masashi", "creatorNameLang": "en"}], "familyNames": [{"familyName": "長井", "familyNameLang": "ja"}, {"familyName": "ナガイ", "familyNameLang": "ja-Kana"}, {"familyName": "NAGAI", "familyNameLang": "en"}], "givenNames": [{"givenName": "雅史", "givenNameLang": "ja"}, {"givenName": "マサシ", "givenNameLang": "ja-Kana"}, {"givenName": "Masashi", "givenNameLang": "en"}], "nameIdentifiers": [{"nameIdentifier": "1598", "nameIdentifierScheme": "WEKO"}]}, {"creatorNames": [{"creatorName": "上田, 英樹", "creatorNameLang": "ja"}, {"creatorName": "ウエダ, ヒデキ", "creatorNameLang": "ja-Kana"}, {"creatorName": "UEDA, Hideki", "creatorNameLang": "en"}], "familyNames": [{"familyName": "上田", "familyNameLang": "ja"}, {"familyName": "ウエダ", "familyNameLang": "ja-Kana"}, {"familyName": "UEDA", "familyNameLang": "en"}], "givenNames": [{"givenName": "英樹", "givenNameLang": "ja"}, {"givenName": "ヒデキ", "givenNameLang": "ja-Kana"}, {"givenName": "Hideki", "givenNameLang": "en"}], "nameIdentifiers": [{"nameIdentifier": "95", "nameIdentifierScheme": "WEKO"}]}, {"creatorNames": [{"creatorName": "横尾, 亮彦", "creatorNameLang": "ja"}, {"creatorName": "ヨコオ, アキヒコ", "creatorNameLang": "ja-Kana"}, {"creatorName": "YOKOO, Akihiko", "creatorNameLang": "en"}], "familyNames": [{"familyName": "横尾", "familyNameLang": "ja"}, {"familyName": "ヨコオ", "familyNameLang": "ja-Kana"}, {"familyName": "YOKOO", "familyNameLang": "en"}], "givenNames": [{"givenName": "亮彦", "givenNameLang": "ja"}, {"givenName": "アキヒコ", "givenNameLang": "ja-Kana"}, {"givenName": "Akihiko", "givenNameLang": "en"}], "nameIdentifiers": [{"nameIdentifier": "1825", "nameIdentifierScheme": "WEKO"}]}]}, "item_files": {"attribute_name": "ファイル情報", "attribute_type": "file", "attribute_value_mlt": [{"accessrole": "open_date", "date": [{"dateType": "Available", "dateValue": "2023-09-01"}], "displaytype": "simple", "download_preview_message": "", "file_order": 0, "filename": "88-5.pdf", "filesize": [{"value": "961 KB"}], "format": "application/pdf", "future_date_message": "", "is_thumbnail": false, "mimetype": "application/pdf", "size": 961000.0, "url": {"url": "https://nied-repo.bosai.go.jp/record/6516/files/88-5.pdf"}, "version_id": "18857b81-fe64-4d6e-a179-49d1edf6f450"}]}, "item_keyword": {"attribute_name": "キーワード", "attribute_value_mlt": [{"subitem_subject": "Volcanic ash particle, Machine learning, Convolutional neural network, RGB microphotograph, Volcano monitoring", "subitem_subject_language": "en", "subitem_subject_scheme": "Other"}, {"subitem_subject": "火山灰粒子, 機械学習, 畳み込みニューラルネットワーク, RGB 顕微鏡画像, 火山観測", "subitem_subject_language": "ja", "subitem_subject_scheme": "Other"}]}, "item_language": {"attribute_name": "言語", "attribute_value_mlt": [{"subitem_language": "eng"}]}, "item_resource_type": {"attribute_name": "資源タイプ", "attribute_value_mlt": [{"resourcetype": "article", "resourceuri": "http://purl.org/coar/resource_type/c_6501"}]}, "item_title": "RGB 顕微鏡画像を用いた畳み込みニューラルネットワークによる火山灰粒子の分類 -進行する火山噴火のリアルタイムモニタリングに向けて-", "item_titles": {"attribute_name": "タイトル", "attribute_value_mlt": [{"subitem_title": "RGB 顕微鏡画像を用いた畳み込みニューラルネットワークによる火山灰粒子の分類 -進行する火山噴火のリアルタイムモニタリングに向けて-", "subitem_title_language": "ja"}, {"subitem_title": "Classification of Volcanic Ash Particles with a Convolutional Neural Network on RGB Microphotographs: Towards Real-Time Monitoring of an Ongoing Eruption", "subitem_title_language": "en"}]}, "item_type_id": "10001", "owner": "6", "path": ["1686623598839"], "permalink_uri": "https://doi.org/10.24732/NIED.00006516", "pubdate": {"attribute_name": "PubDate", "attribute_value": "2023-09-29"}, "publish_date": "2023-09-29", "publish_status": "0", "recid": "6516", "relation": {}, "relation_version_is_last": true, "title": ["RGB 顕微鏡画像を用いた畳み込みニューラルネットワークによる火山灰粒子の分類 -進行する火山噴火のリアルタイムモニタリングに向けて-"], "weko_shared_id": -1}
  1. 防災科研刊行物
  2. 研究報告
  3. 86-88

RGB 顕微鏡画像を用いた畳み込みニューラルネットワークによる火山灰粒子の分類 -進行する火山噴火のリアルタイムモニタリングに向けて-

https://doi.org/10.24732/NIED.00006516

DOI

https://doi.org/10.24732/NIED.00006516
311d0407-ec65-4c6c-a385-aa91f3658ba2
名前 / ファイル ライセンス アクション
88-5.pdf 88-5.pdf (961 KB)
Item type 学術雑誌論文 / Journal Article(1)
タイトル
言語 ja
タイトル RGB 顕微鏡画像を用いた畳み込みニューラルネットワークによる火山灰粒子の分類 -進行する火山噴火のリアルタイムモニタリングに向けて-
タイトル
言語 en
タイトル Classification of Volcanic Ash Particles with a Convolutional Neural Network on RGB Microphotographs: Towards Real-Time Monitoring of an Ongoing Eruption
言語
言語 eng
キーワード
言語 en
主題Scheme Other
主題 Volcanic ash particle, Machine learning, Convolutional neural network, RGB microphotograph, Volcano monitoring
キーワード
言語 ja
主題Scheme Other
主題 火山灰粒子, 機械学習, 畳み込みニューラルネットワーク, RGB 顕微鏡画像, 火山観測
資源タイプ
資源タイプ識別子 http://purl.org/coar/resource_type/c_6501
資源タイプ article
ID登録
ID登録 10.24732/NIED.00006516
ID登録タイプ JaLC
著者 三輪, 学央

× 三輪, 学央

WEKO 82

ja 三輪, 学央

ja-Kana ミワ, タカヒロ

en MIWA, Takahiro

Search repository
長井, 雅史

× 長井, 雅史

WEKO 1598

ja 長井, 雅史

ja-Kana ナガイ, マサシ

en NAGAI, Masashi

Search repository
上田, 英樹

× 上田, 英樹

WEKO 95

ja 上田, 英樹

ja-Kana ウエダ, ヒデキ

en UEDA, Hideki

Search repository
横尾, 亮彦

× 横尾, 亮彦

WEKO 1825

ja 横尾, 亮彦

ja-Kana ヨコオ, アキヒコ

en YOKOO, Akihiko

Search repository
抄録
内容記述タイプ Abstract
内容記述 噴火様式の連続リアルタイムモニタリングはハザード評価に不可欠である.火山灰粒子の構成物比は噴火様式のプロキシとして用いられてきた.しかし,火山灰構成物比のリアルタイムモニタリングはまだ実現されていない.本研究では,畳み込みニューラルネットワーク(CNN)と RGB 顕微鏡写真を用いて,2014 年から2016 年にかけて噴出された阿蘇火山の火山灰粒子を分類した.我々は,2 つの火山灰試料の粒子を5 つのカテゴリに分類し,計512 枚の画像を用いてCNN アルゴリズムに基づく学習を行った.次に,学習させたCNN を用いて,6 試料の構成物解析を行った.その結果,CNN による構成物比は,実体顕微鏡観察に基づく分類結果と調和的であり,また顕微鏡写真中の518 個の粒子を3 分以内に分類することに成功した.以上から,RGB 顕微鏡写真とCNN を用いた構成物解析は,噴火の準リアルタイムモニタリングに適用可能であると結論できる.
言語 ja
抄録
内容記述タイプ Abstract
内容記述 Real-time monitoring is vital for timely hazard evaluation during ongoing volcanic eruptions. The component fractions of volcanic ash particles have been used as a proxy for eruption style. However, continuous real-time monitoring of the components in airfall ash has not yet been realized, because manual classification is time-consuming and the criteria for the classification are subjective. In this study, we used a convolutional neural network (CNN) method to classify volcanic ash particles from the 2014?2016 activity at Aso volcano, Japan, using microphotographs taken as red-green-blue (RGB) images that capture the ash surface microstructures. We trained the CNN algorithm using 512 images of five categories of ash particles which were based on color, vesicularity, glassiness, alteration and crystal fragments from two ash samples.Component analysis was then undertaken on six ash samples using the trained CNN. The component fractions obtained by the trained CNN are consistent with those from a manual classification based on observations with a stereoscopic microscope. The trained CNN successfully classified 518 particles in the microphotographs within 3 min. Thus, we conclude that component analysis by the CNN method using RGB microphotographs could be applied to quasi-real-time monitoring of an ongoing eruption.
言語 en
書誌情報 ja : 防災科学技術研究所 研究報告
en : Report of the National Research Institute for Earth Science and Disaster Resilience

号 88, p. 25-31, 発行日 2023-09-29
出版者
言語 ja
出版者 防災科学技術研究所
収録物識別子
収録物識別子タイプ EISSN
収録物識別子 1347-7471
戻る
0
views
See details
Views

Versions

Ver.1 2023-12-26 05:00:21.473297
Show All versions

エクスポート

OAI-PMH
  • OAI-PMH JPCOAR
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by WEKO3

Change consent settings


Powered by WEKO3

Change consent settings